K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2023

\(5^{60n}< 2^{140n}< 3^{100n}\)

\(5^{60n}=\left(5^3\right)^{20n}=125^{20n}\\ 2^{140n}=\left(2^7\right)^{20n}=128^{20n}\\ 3^{100n}=\left(3^5\right)^{20n}=243^{20n}\)

 Mà\(125< 128< 243\Rightarrow125^{20n}< 128^{20n}< 243^{20n}\Rightarrow5^{60n}< 2^{140n}< 3^{100n}\) 

Vậy đã CMR: \(5^{60n}< 2^{140n}< 3^{100n}\)

8 tháng 10 2023

Ta có:

5⁶⁰ⁿ = (5³)²⁰ⁿ = 125²⁰ⁿ

2¹⁴⁰ⁿ = (2⁷)²⁰ⁿ = 128²⁰ⁿ

3¹⁰⁰ⁿ = (3⁵)²⁰ⁿ = 243²⁰ⁿ

Do 125 < 128 < 243

125²⁰ⁿ < 128²⁰ⁿ < 243²⁰ⁿ

Vậy 5⁶⁰ⁿ < 2¹⁴⁰ⁿ < 3¹⁰⁰ⁿ

21 tháng 7 2016

\(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2.n^2+2n+1}< \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{2.n^2+2n}\)

\(A< \frac{1}{2}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

24 tháng 4 2016

M = 1/2.2 + 1/3.3 +.....+ 1/n.n

M < 1/1.2 + 1/2.3 +.....+ 1/(n-1).n

M < 1 - 1/2 + 1/2 - 1/3 +......+ 1/n-1 - 1/n

M < 1 - 1/n < 1

=> M < 1 (đpcm)

Ai k mk mk k lại cho,kết bạn luôn nhé!

5 tháng 7 2018

Ta có: \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\)

\(\Rightarrow\frac{1}{5}+\frac{1}{13}+...+\frac{1}{n^2+\left(n+1\right)^2}\)

\(=\frac{1}{1^2+2^2}+\frac{1}{2^2+3^2}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2.1.2}+\frac{1}{2.2.3}+...+\frac{1}{2.n.\left(n+1\right)}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{n.\left(n+1\right)}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)

19 tháng 4 2018

mình làm rồi mà sợ sai

8 tháng 8 2017

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\text{…}+\frac{1}{2^{n-1}}\)

\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+\text{…}+\frac{1}{2^{n-1}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\text{…}-\frac{1}{2^n}\)

\(A=1-\frac{1}{2^n}\)

Vậy A < 1 với n thuộc N*

23 tháng 2 2016

A=\(\frac{3}{1.4}+\frac{3}{4.7}+...........+\frac{3}{n.\left(n+3\right)}\)

A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...............+\frac{1}{n}-\frac{1}{n+3}\)

A=\(1-\frac{1}{n+3}\)<1

Vậy A<1(đpcm)

Ta có : 
3333...3(100 chữ số 3)/3=1111....1(100 chữ số 1) 
=> 1111....1(100 chữ số 1) * 3 = 3333.....3(100 chữ số 3) 
Từ ví dụ trên ta thấy : 
11111....1(n chữ số 1) * 3 = 33333.......3(n chữ số 3) 
=> Nếu ta nhân n với 3 thì ra số chữ số 1 cần tìm 
=> n*3=100*3=300 
Vậy có 300 chữ số 1 để chia hết cho 100 chữ số 3