K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

k mik ik 

mik kb cho

25 tháng 2 2020

bài làm 

 (777777 - 3999) . 201,7 =156071011.6

=> nó là số nguyên

hacker 2k6 

16 tháng 5 2017

\(777^{777}=\left(777^4\right)^{194}.777^1\) có tận cùng bằng 7

\(3^{999}=\left(3^4\right)^{249}.3^3\) có tận cùng bằng 7

\(\Rightarrow777^{777}-3^{999}⋮10\\ \Rightarrow\left(777^{777}-3^{999}\right).201,7\in Z\)

14 tháng 12 2019

Rút gọn biểu thức ta có:

Giải bài 52 trang 58 Toán 8 Tập 1 | Giải bài tập Toán 8

Với a là một số nguyên thì giá trị biểu thức bằng 2a là một số chẵn.

12 tháng 3 2020

Để A nguyên mà 32018 + 1 > 5 thì phải cm 32018 + 1\(⋮\)5

Bài giải

Ta có: A = \(\frac{3^{2018}+1}{5}\)

Xét chữ số tận cùng của 32018:

Ta có:

32018 = 34.504 + 2 = 34.504.32 = (...1).32 = (...1).9 = (...9)

Xét 32018 + 1:

32018 + 1 = (...9) + 1 = (...0)

Vì 32018 + 1 có chữ số tận cùng là 0

Nên 32018 + 1 \(⋮\)5

Suy ra A thuộc Z

=> Đpcm

15 tháng 3 2020

cho\(\frac{3}{1.3}\)+\(\frac{3}{3.5}\)+\(\frac{3}{5.7}\)+...+\(\frac{3}{49.51}\)hãy tính giá trị biểu thức

20 tháng 9 2019

~~~Học Tốt~~~

20 tháng 9 2019

Rút gọn biểu thức ta có :

 \(\left(a-\frac{x^2+a^2}{x+a}\right).\left(\frac{2a}{x}-\frac{4a}{x-a}\right)\)

\(=\frac{a\left(x+a\right)-\left(x^2+a^2\right)}{x+}.\frac{2a\left(x-a\right)-4a.x}{x\left(x-a\right)}\)

\(=\frac{ax+a^2-x^2-a^2}{x+a}.\frac{2ax-2a^2-4ax}{x\left(x-a\right)}\)

\(=\frac{ax-x^2}{x+a}.\frac{-2a^2-2ax}{x\left(x-a\right)}\)

\(=\frac{-\left(x^2-ax\right)}{\left(x+a\right)}.\frac{-\left(2a^2+2ax\right)}{x\left(x-a\right)}\)

\(=\frac{\left(x^2-ax\right).\left(2a^2+2ax\right)}{x\left(x+a\right)\left(x-a\right)}\)

\(=\frac{x\left(x-a\right).2a\left(a+x\right)}{x\left(x+a\right)\left(x-a\right)}\)

\(=2a\)

Với a là một số nguyên thì giá trị biểu thức bằng 2a là một số chẵn.

Chúc bạn học tốt !!!

1 tháng 6 2018

Rút gọn được P = 4a. Do đó P là một số chẵn (vì a nguyên).

3 tháng 4 2020

\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)

a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)

\(\Rightarrow C>0\forall x\)(đpcm)

b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)

\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)

\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)

\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)

\(\Leftrightarrow x\in\left\{0\right\}\)

....

c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)

Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)

\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

:33

16 tháng 1 2016

\(\sqrt{2014^2\left(\frac{1}{2014^2}+1+\frac{1}{2015^2}\right)}-\frac{2014}{2015}=2014\sqrt{\left(1+\frac{1}{2014}+\frac{1}{2015}\right)^2}-\frac{2014}{2015}\)

\(=2014\left(1+\frac{1}{2014}+\frac{1}{2015}\right)-\frac{2014}{2015}=2015\)

16 tháng 1 2016

\(B=\sqrt{2014^2\left(1+\frac{1}{2014}-\frac{1}{2015}\right)^2}+\frac{2014}{2015}=2015\)