Cho tam giác ABC nhọn. Nội tiếp đường tròn (O) , các đường cao AD, BE của tam giác cắt nhau tại H. Chứng minh các tứ giác CDHE và ABDE nội tiếp.
Vẽ hình và giải giúp gấp e với ạ💗
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\)
nên BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{HDC}+\widehat{HEC}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
a: góc AEB=góc ADB=90 độ
=>ABDE nội tiếp
b: góc CBK=1/2*180=90 độ
Xet ΔCBK vuông tại B và ΔCFA vuông tại F có
góc BCK=góc FCA
=>ΔCBK đồng dạng vơi ΔCFA
=>CB/CF=CK/CA
=>CB*CA=CF*CK
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc CDH+góc CEH=90+90=180 độ
=>CDHE nội tiếp
b: góc AFH+góc AEH=180 độ
=>AFHE nội tiếp
góc FEH=góc BAD
góc DEH=góc FCB
mà góc BAD=góc FCB
nên góc FEH=góc DEH
=>EH là phân giác của góc FED
Xét ΔBFE và ΔDHE có
góc BEF=góc DEH
góc BFE=góc DHE
=>ΔBFE đồng dạng với ΔDHE
a/
Ta có D và E cùng nhìn HC dưới 1 góc vuông nên D và E thuộc đường tròn đường kính HC => CDHE là tứ giác nội tiếp
Ta có E và F cùng nhìn BC dưới 1 góc vuông nên E và F thuộc đường tròn đường kính BC => BCEF là tứ giác nội tiếp
b/ Xét tg MEB và tg MCF có
\(\widehat{EMC}\) chung
\(\widehat{MEB}=\widehat{MCF}\) (góc nội tiếp cùng chắn cung BF)
=> tg MEB đồng dạng với tg MCF (g.g.g)
\(\Rightarrow\dfrac{ME}{MC}=\dfrac{MB}{MF}\Rightarrow MB.MC=ME.MF\)
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{CDH}+\widehat{CEH}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
b: \(\widehat{FEB}=\widehat{BAD}\)(vì AFHE là tứ giác nội tiếp)
\(\widehat{BED}=\widehat{FCB}\)(BFEC là tứ giác nội tiếp)
mà \(\widehat{BAD}=\widehat{FCB}\)
nên \(\widehat{FEB}=\widehat{BED}\)
hay EB là tia phân giác góc FED
a: Xét tứ giác ABDE có
\(\widehat{ADB}=\widehat{AEB}=90^0\)
Do đó: ABDE là tứ giác nội tiếp
b: Xét ΔDAC vuông tại D và ΔDBF vuông tại D có
\(\widehat{DAC}=\widehat{DBF}\)
Do đó:ΔDAC∼ΔDBF
Suy ra: DA/DB=DC/DF
hay \(DB\cdot DC=DA\cdot DF\)
Xét tứ giác ABDE:
\(\widehat{AEB}=90^o\left(AE\perp BE\right).\\ \widehat{ADB}=90^o\left(AD\perp BD\right).\\ \Rightarrow\widehat{AEB}=\widehat{ADB}.\)
Mà 2 đỉnh E, D kề nhau, cùng nhìn cạnh AB.
\(\Rightarrow\) Tứ giác ABDE nội tiếp (dhnb).
Xét tứ giác HDCE:
\(\widehat{HEC}=90^o\left(DE\perp EC\right).\\ \widehat{HDC}=90^o\left(HD\perp DC\right).\\ \Rightarrow\widehat{HEC}+\widehat{HDC}=180^o.\)
Mà 2 góc này ở vị trí đối nhau.
\(\Rightarrow\) Tứ giác HDCE nội tiếp (dhnb).
Tứ giác ABDE nội tiếp (cmt).
\(\Rightarrow\widehat{EBD}=\widehat{BAD}.\)
Xét \(\Delta DBH\) và \(\Delta DAC:\)
\(\widehat{BDH}=\widehat{ADC}\left(=90^o\right).\)
\(\widehat{HBD}=\widehat{CAD}\left(\widehat{EBD}=\widehat{BAD}\right).\)
\(\Rightarrow\Delta DBH\sim\Delta DAC\left(g-g\right).\)
\(\Rightarrow\dfrac{DB}{DA}=\dfrac{DH}{DC}.\\ \Rightarrow DB.DC=DH.DA.\)
góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
góc CDH+góc CEH=180 độ
=>CEHD nội tiếp