K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2023

loading...

28 tháng 5 2023

Đenta tính sai rồi bạn ạk

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
18 tháng 8 2023

\(x^2+y^2=3-xy\)

\(\Leftrightarrow\left(x-y\right)^2+2xy=3-xy\)

\(\Leftrightarrow\left(x-y\right)^2=3-3xy\)

\(\Leftrightarrow\left(x-y\right)^2=3\left(1-xy\right)\)

mà \(\left(x-y\right)^2\ge0,\forall x;y\inℤ\)

PT\(\Leftrightarrow\left\{{}\begin{matrix}x-y=3\\1-xy=3\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x-y=0\\1-xy=0\end{matrix}\right.\)

\(TH1:\left\{{}\begin{matrix}x-y=3\\1-xy=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+3\\xy=-2\end{matrix}\right.\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;-2\right);\left(2;-1\right);\left(-1;2\right);\left(-2;1\right)\right\}\)

\(TH2:\left\{{}\begin{matrix}x-y=0\\1-xy=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\xy=1\end{matrix}\right.\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)

Vậy \(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;-2\right);\left(2;-1\right);\left(-1;2\right);\left(-2;1\right);\left(1;1\right);\left(-1;-1\right)\right\}\)

29 tháng 8 2023

\(x^2+y^2=3-xy\)

\(\Leftrightarrow\left(x-y\right)^2=3.\left(1-xy\right)\)

\(\Leftrightarrow x-y=3\) và \(1-xy=3\)

\(\Leftrightarrow\left(x;y\right)=\left(1;-2\right),\left(2;-1\right),\left(-1;2\right),\left(-2;1\right)\)

hoặc \(x-y=0\) và \(1-xy=0\)

\(\Leftrightarrow\left(x;y\right)=\left(1;1\right),\left(-1;-1\right)\)

29 tháng 8 2023

Dễ

20 tháng 2 2018

<=>x2(x+y)+y2(x+y)=2001

<=>(x+y)(x2+y2)=2001

=>x+y, x2+y2 E Ư(2001)={1;3;23;29;69;87;667;2001}

Rồi xét các trường hợp => x,y

20 tháng 7 2017

câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp

còn câu 3 tui hông nghĩ ra....

21 tháng 7 2017

Thanks bạn

30 tháng 7 2021

      \(x+y+xy=x^2+y^2\)

⇔  \(2xy+2x+2y=2x^2+2y^2\)

\(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)           

⇔  \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

⇔ 

⇔ 

Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).