K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
KN
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KN
2
29 tháng 8 2023
\(x^2+y^2=3-xy\)
\(\Leftrightarrow\left(x-y\right)^2=3.\left(1-xy\right)\)
\(\Leftrightarrow x-y=3\) và \(1-xy=3\)
\(\Leftrightarrow\left(x;y\right)=\left(1;-2\right),\left(2;-1\right),\left(-1;2\right),\left(-2;1\right)\)
hoặc \(x-y=0\) và \(1-xy=0\)
\(\Leftrightarrow\left(x;y\right)=\left(1;1\right),\left(-1;-1\right)\)
TT
0
TT
1
TN
26 tháng 3 2017
\(pt\Leftrightarrow\left(x-1\right)\left(x-2y^2-y+2\right)=1\)
Ok ?!
NT
0
QT
1
20 tháng 7 2017
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....
DL
0
NP
0
\(x^2+y^2=3-xy\)
\(\Leftrightarrow\left(x-y\right)^2+2xy=3-xy\)
\(\Leftrightarrow\left(x-y\right)^2=3-3xy\)
\(\Leftrightarrow\left(x-y\right)^2=3\left(1-xy\right)\)
mà \(\left(x-y\right)^2\ge0,\forall x;y\inℤ\)
PT\(\Leftrightarrow\left\{{}\begin{matrix}x-y=3\\1-xy=3\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x-y=0\\1-xy=0\end{matrix}\right.\)
\(TH1:\left\{{}\begin{matrix}x-y=3\\1-xy=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+3\\xy=-2\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;-2\right);\left(2;-1\right);\left(-1;2\right);\left(-2;1\right)\right\}\)
\(TH2:\left\{{}\begin{matrix}x-y=0\\1-xy=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\xy=1\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
Vậy \(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;-2\right);\left(2;-1\right);\left(-1;2\right);\left(-2;1\right);\left(1;1\right);\left(-1;-1\right)\right\}\)