K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x+y>=2 căn xy

y+z>=2 căn yz

x+z>=2 căn xz

=>(x+y)(y+z)(x+z)>=8xyz

31 tháng 3 2018

Áp dụng BĐT Cô - si : a + b ≥ 2\(\sqrt{ab}\)

=> x + y ≥ \(2\sqrt{xy}\) ( 1 )

y + z ≥ \(2\sqrt{yz}\) ( 2 )

x + z ≥ 2\(\sqrt{xz}\) ( 3 )

Nhân tưng vế của ( 1 , 2 , 3) , ta được :

( x + y )( y + z)( z + x ) ≥ \(2\sqrt{xy}\) . \(2\sqrt{yz}\) .2 \(\sqrt{xz}\)

<=> ( x + y )( y + z)( z + x ) ≥ 8 xyz

31 tháng 3 2018

ta có (x+y)2 ≥ 4xy

(y+z)2≥ 4yz

(x+z)2≥4xz

nhân từng vế của bđt trên ta được

(x+y)2 (y+z)2 (x+z)2 ≥ 64 x2y2z2

=> [(x+y)(y+z)(x+z)]2≥ (8xyz)2

=>(x+y)(y+z)(x+z)≥ 8xyz(đpcm)

13 tháng 8 2018

Ta có:

\(\left(1-x\right)\left(1-y\right)\left(1-z\right)=\left(x+y+z-x\right)\left(x+y+z-y\right)\left(x+y+z-z\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Áp dụng BĐT Cosi ta có :

\(\left\{{}\begin{matrix}x+y\ge2\sqrt{xy}\\y+z\ge2\sqrt{yz}\\z+x\ge2\sqrt{zx}\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\) (ĐPCM)

Dấu bằng xảy ra khi : x=y=z

10 tháng 11 2019

\(4\left(x+y\right)\left(y+z\right)\left(1-y\right)\le\left(x+2y+z\right)^2\left(1-y\right)\)

\(\le\frac{1}{4}\left(x+2y+z\right)\left(x+2y+z+1-y\right)^2=x+2y+z\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=z=\frac{1}{2}\\y=0\end{cases}}\)

1 tháng 11 2016

ngu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleungu ngườileuleuchó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoa

4 tháng 11 2016

im mồm hiu

18 tháng 6 2021

`x+y+z>=0` là chưa đủ phải là `x,y,z>=0` mới đúng.

`x+y+z>=sqrt{xy}+sqrt{yz}+sqrt{zx}`

`<=>2x+2y+2z>=2sqrt{xy}+2sqrt{yz}+2sqrt{zx}`

`<=>x-2sqrt{xy}+y+y-2sqrt{yz}+z+z-2sqrt{zx}+x>=0`

`<=>(sqrtx-sqrty)^2+(sqrty-sqrtz)^2+(sqrtz-sqrtx)^2>=0` luôn đúng

Dấu `"="<=>x=y=z`

18 tháng 6 2021

Áp dụng bdt Co-si, ta có:

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(z+x\ge2\sqrt{xz}\)

=> 2(x+y+z) \(\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

=> đpcm

5 tháng 2 2022

\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)

\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)

\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)

5 tháng 4 2019

P/s: BĐT AM-GM là ra thôi bạn :D

Áp dụng AM-GM cho các số không âm, ta có:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=z\)