K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2023

Ta có: a.b = c.(a + b) => a.b + c^2 = c.(a + b + c)

Do a và c nguyên tố cùng nhau nên (a, c) = 1. Từ đó suy ra (a^2, c) = 1 và (b^2, c) = 1.

Mà a.b + c^2 = c.(a + b + c) nên ta có:

a.b + c^2 ≡ 0 (mod c)

a.b ≡ -c^2 (mod c)

a.b ≡ 0 (mod c)

Vì (a, c) = 1 nên ta có (b, c) = 1.

Từ a.b = c.(a + b) và (a, c) = 1, suy ra a|b. Đặt b = a.k (k là số tự nhiên).

Thay vào a.b = c.(a + b), ta được:

a^2.k = c.(a + a.k) => k = c/(a^2 - c)

Vì k là số tự nhiên nên a^2 - c | c. Nhưng (a, c) = 1 nên a^2 - c không chia hết cho c. Do đó a^2 - c = 1.

Từ đó suy ra c = a^2 - 1.

Vậy a.b.c = a^2.b - b là số chính phương.

29 tháng 7 2023

a) D = {2; 7; 12; ...; 82; 87}

Số phần tử của D:

(87 - 2) : 5 + 1 = 18 (phần tử)

b) x - 15 = 37

x = 37 + 15

x = 52

E = {52}

Số phần tử của E là 1

c) a . 6 = 4

a = 4 : 6

a = 2/3 (loại vì a ∈ ℕ)

F = ∅

Vậy F không có phần tử nào

29 tháng 7 2023

a) D = { 2 ; 7 ; 12 ; 17 ; 22 ; 27 ; 32 ; 37 ; 42 ; 47 ; 52 ; 57 ; 62 ; 67 ; 72 ; 77 ; 82 ; 87 } 
b) E = { 52 }
c) F = { \(\varnothing\) } 
- HokTot - 

12 tháng 7 2023

a : 5 dư 3 thì a = 5.q + 3 ( q \(\in\) N)

Câu sai là: B và câu C 

13 tháng 7 2023

a) Liệt kê:

\(A=\left\{34;38;40;42\right\}\)

b) Liệt kê:

\(B=\left\{9;10;11;12;13\right\}\)

c) Liệt kê:

\(C=\left\{25;27;29\right\}\)

13 tháng 7 2023

a) Liệt kê:

�={34;38;40;42}A={34;38;40;42}

b) Liệt kê:

�={9;10;11;12;13}B={9;10;11;12;13}

c) Liệt kê:

�={25;27;29}C={25;27;29}

     Tick nha

30 tháng 10 2023

a) 2; 3; 4

b) 1; 2; 3

30 tháng 12 2021

Số hạng chia hết cho a có dạng x = a.k (k ∈ N)

Do đó số hạng chia hết cho 3 có dạng x = 3k (k ∈ N)

30 tháng 12 2021

Chọn A

14 tháng 1 2018

a) \(n+1\inƯ\left(n^2+2n-3\right)\)

\(\Leftrightarrow n^2+2n-3⋮n+1\)

\(\Leftrightarrow n\left(n+1\right)+n-3⋮n+1\)

\(n\left(n+1\right)⋮n+1\Rightarrow n-3⋮n+1\)

\(\Leftrightarrow n+1-4⋮n+1\)

\(n+1⋮n+1\Rightarrow-4⋮n+1\Rightarrow n+1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\) \(-2\) \(2\) \(-4\) \(4\)
\(n\) \(-2\) \(0\) \(-3\) \(1\) \(-5\) \(3\)

Vậy...

b) \(n^2+2\in B\left(n^2+1\right)\)

\(\Leftrightarrow n^2+2⋮n^2+1\)

\(\Leftrightarrow n^2+1+1⋮n^2+1\)

\(n^2+1⋮n^2+1\) nên \(1⋮n^2+1\Rightarrow n^2+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n^2+1\) \(-1\) \(1\)
\(n\) \(\sqrt{-2}\) (vô lý, vì 1 số ko âm mới có căn bậc hai)

\(0\) (tm)

Vậy \(n=0\)

c) \(2n+3\in B\left(n+1\right)\)

\(\Leftrightarrow2n+3⋮n+1\)

\(\Leftrightarrow2n+2+1⋮n+1\)

\(\Leftrightarrow2\left(n+1\right)+1⋮n+1\)

\(2\left(n+1\right)⋮n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\)
\(n\) \(-2\) \(0\)

Vậy...

18 tháng 1 2018

a) n+1∈Ư(n2+2n−3)n+1∈Ư(n2+2n−3)

⇔n2+2n−3⋮n+1⇔n2+2n−3⋮n+1

⇔n(n+1)+n−3⋮n+1⇔n(n+1)+n−3⋮n+1

n(n+1)⋮n+1⇒n−3⋮n+1n(n+1)⋮n+1⇒n−3⋮n+1

⇔n+1−4⋮n+1⇔n+1−4⋮n+1

n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}

Ta có bảng sau:

n+1n+1 −1−1 11 −2−2 22 −4−4 44
nn −2−2 00 −3−3 11 −5−5 33

Vậy...

b) n2+2∈B(n2+1)n2+2∈B(n2+1)

⇔n2+2⋮n2+1⇔n2+2⋮n2+1

⇔n2+1+1⋮n2+1⇔n2+1+1⋮n2+1

n2+1⋮n2+1n2+1⋮n2+1 nên 1⋮n2+1⇒n2+1∈Ư(1)={−1;1}1⋮n2+1⇒n2+1∈Ư(1)={−1;1}

Ta có bảng sau:

n2+1n2+1 −1−1 11
nn √−2−2 (vô lý, vì 1 số ko âm mới có căn bậc hai)

00 (tm)

Vậy n=0n=0

c) 2n+3∈B(n+1)2n+3∈B(n+1)

⇔2n+3⋮n+1⇔2n+3⋮n+1

⇔2n+2+1⋮n+1⇔2n+2+1⋮n+1

⇔2(n+1)+1⋮n+1⇔2(n+1)+1⋮n+1

2(n+1)⋮n+12(n+1)⋮n+1 nên 1⋮n+1⇒n+1∈Ư(1)={−1;1}1⋮n+1⇒n+1∈Ư(1)={−1;1}

Ta có bảng sau:

n+1n+1 −1−1 11
nn −2−2 00

Bài 2: 

a: Để E là số nguyên thì \(3n+5⋮n+7\)

\(\Leftrightarrow3n+21-16⋮n+7\)

\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)

b: Để F là số nguyên thì \(2n+9⋮n-5\)

\(\Leftrightarrow2n-10+19⋮n-5\)

\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{6;4;29;-14\right\}\)