M=4^12+1/4^13+1,N=4^13+1/4^14+1.Hãy so sánh M và N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) 4M = \(\dfrac{4^{13}+4}{4^{13}+1}=1+\dfrac{3}{4^{13}+1}\)
+) 4N = \(\dfrac{4^{14}+4}{4^{14}+1}=1+\dfrac{3}{4^{14}+1}\)
Có 413+1 < 414+1
⇒ \(\dfrac{3}{4^{13}+1}\) > \(\dfrac{3}{4^{14}+1}\)
⇒ \(1+\dfrac{3}{4^{13}+1}\) > \(1+\dfrac{3}{4^{14}+1}\)
⇒ 4M > 4N
⇒ M > N
Nếu mà có sai sót gì thì cho mình xin lỗi nhé
a) Ta có:
\(A=-3\cdot7\cdot\left(-2\right)\cdot\left(-13\right)\)
\(A=-21\cdot26\)
\(A=-546\)
\(B=-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot\left(-4\right)\cdot5\)
\(B=2\cdot12\cdot5\)
\(B=2\cdot60\)
\(B=120\)
Mà: \(120>-546\)
\(\Rightarrow B>A\)
Bài 1:
a: -8/12<0<-3/-4
b: -56/24<0<7/3
c: 4/25<1<15/13
=>-4/25>-15/13
Bài 2:
a: =-60/45=-4/3
b: =4/15-3/2-8/5=8/30-45/30-48/30=-85/30=-17/6
Câu 4:
\(4^{n+2}-4^{n-1}=252\\ \Leftrightarrow4^{n-1}.\left(4^3-1\right)=252\\ \Leftrightarrow4^{n-1}.63=252\\ \Leftrightarrow4^{n-1}=\dfrac{252}{63}=4=4^1\\ \Rightarrow n-1=1\\ \Rightarrow n=2\)
Có bài lớp 2 mà ko ai giúp túi hết v :)))
rồi lớp 2 dữ chưa