K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2021

\(x-k=9+k\)

\(\Leftrightarrow x=9+k+k\)

\(\Leftrightarrow x=9+2k\)

Phương trình có nghiệm không bé hơn 7 \(\Leftrightarrow9+2k\ge7\)

\(\Leftrightarrow2k\ge7-9\)

\(\Leftrightarrow2k\ge-2\)

\(\Leftrightarrow k\ge-1\)

Vậy để phương trình đã cho có nghiệm không bé hơn 7 thì \(k\ge-1\)

31 tháng 5 2021

\(kx^2-2\left(k+1\right)x+k+1=0\)  (*)

 Để pt có hai nghiệm dương <=> Pt (*) là pt bậc 2 <=> \(a\ne0\) hay \(k\ne0\)

 Để pt có nghiệm thỏa mãn đề \(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1x_1>0\\x_1< 1< x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}k+1>0\\\dfrac{2\left(k+1\right)}{k}>0\\\dfrac{k+1}{k}>0\\\left(x_1-1\right)\left(x_2-1\right)< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}k>0\\x_1x_2-\left(x_1+x_2\right)+1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k>0\\\dfrac{k+1}{k}-\dfrac{2\left(k+1\right)}{k}+\dfrac{k}{k}< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}k>0\\-\dfrac{1}{k}< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}k>0\\k>0\end{matrix}\right.\)\(\Rightarrow k>0\)

Vậy k>0 thì pt có nghiệm thỏa mãn đề

31 tháng 5 2021

a) kx2 - 2(k + 1)x + k + 1 = 0

△' = (k + 1)2 - k(k + 1) = k2 + 2k + 1 - k2 - k

                                    = k + 1

Để phương trình có nghiệm thì △' ≥ 0 => k + 1 ≥ 0 => k ≥ -1

Theo hệ thức Vi-et có: \(\left\{{}\begin{matrix}x_1+x_2=2k+2\\x_1.x_2=k+1\end{matrix}\right.\)

Phương trình có 2 nghiệm dương ⇔ \(\left\{{}\begin{matrix}\Delta'\ge0\\x_1+x_2>0\\x_1.x_2>0\end{matrix}\right.\)\(\left\{{}\begin{matrix}k+1\ge0\\2k+2>0\\k+1>0\end{matrix}\right.\)

                                                                                   ⇔ k > -1

b) Gọi 2 nghiệm của phương trình là x1, x2 => x1 < 1 < x2

=> x1 - 1 < 0; x2 - 1 > 0 => (x1 - 1)(x2 - 1) < 0

                                     ⇔ x1.x2 - (x1 + x2) + 1 < 0

                                     ⇔ k + 1 - 2k - 2 + 1 < 0

                                     ⇔ -k < 0 ⇔ k > 0

Để phương trình có 2 nghiệm phân biệt thì △' = k + 1 > 0 => k > -1

=> Để phương trình có 2 nghiệm thoả mãn đề bài thì k > 0

9 tháng 2 2021

ĐKXĐ : \(\left\{{}\begin{matrix}x\ne1\\x\ne0\end{matrix}\right.\)

PT \(\Leftrightarrow\dfrac{2x}{x\left(x-1\right)}+\dfrac{k\left(x-1\right)}{x\left(x-1\right)}=\dfrac{k}{x\left(x-1\right)}\)

\(\Leftrightarrow2x+k\left(x-1\right)=k\)

\(\Leftrightarrow2x+kx-k=k\)

\(\Leftrightarrow2x+kx-2k=0\)

\(\Leftrightarrow x\left(k+2\right)=2k\)

- Để phương trình vô nghiệm :

\(\Leftrightarrow\left\{{}\begin{matrix}k+2=0\\2k\ne0\end{matrix}\right.\)

\(\Rightarrow k=-2\) ( TM )

Vậy k = - 2 thỏa mãn yêu cầu đề bài . 

9 tháng 2 2021

\(\dfrac{2}{x-1}+\dfrac{k}{x}=\dfrac{k}{x^2-x}\)

\(\Leftrightarrow\dfrac{2x+kx-k}{x^2-x}=\dfrac{k}{x^2-x}\)

\(\Leftrightarrow\left(2+k\right)x-2k=0\)

PT vô nghiệm khi và chỉ khi \(\left\{{}\begin{matrix}2+k=0\\2k\ne0\end{matrix}\right.\)=> k = -2

Vậy PT vô nghiệm khi k = -2

20 tháng 3 2018

bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra 

bài 1 câu c "

\(4x^2-25+k^2+4kx=0.\)

thay x=-2 vào ta được

\(16-25+k^2+-8k=0\)

\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)

\(k\left(k+1\right)-9\left(k+1\right)=0\)

\(\left(k+1\right)\left(k-9\right)=0\)

vậy k=1 , 9 thì pt nhận x=-2

bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra 

bài 3 cũng éo hiểu xác định a ? a ở đâu

1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm

. kết luận của chúa Pain đề như ###

23 tháng 6 2018

b1           \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)

ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)

\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)

\(\Leftrightarrow ax-3x=2\)

\(\Leftrightarrow\left(a-3\right)x=2\)

để pt vô nghiệm  thì a-3=0 <=>a=3 thì pt vô nghiệm

2,\(4x-k+4=kx+k\)

\(\Leftrightarrow4x-kx=2k-4\)

\(\Leftrightarrow\left(4-k\right)x=2k-4\)

để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)

pt vô nghiệm thì 4-k=0 <=.>k=4 

8 tháng 8 2018

bài 1: ta có : \(\Delta'=\left(m+4\right)^2-\left(2m-1\right)\left(5m+2\right)\)

\(=m^2+8m+16-\left(10m^2+4m-5m-2\right)\)

\(=-9m^2+9m+18=-9 \left(m^2-m-9\right)\)

để phương trình có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow m^2-m-9\le0\Leftrightarrow\left(m-\dfrac{1}{2}\right)^2-\dfrac{37}{4}\le0\)

\(\Leftrightarrow\left(m-\dfrac{1}{2}\right)^2\le\dfrac{37}{4}\Leftrightarrow-\dfrac{\sqrt{37}}{2}\le m-\dfrac{1}{2}\le\dfrac{\sqrt{37}}{2}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{\sqrt{37}}{2}\le m\le\dfrac{\sqrt{37}}{2}+\dfrac{1}{2}\)

bài 2: a) ta có : \(\Delta'=m^2-\left(m-1\right)\left(m-4\right)=5m-4\)

để phương trình có nghiệm \(\Leftrightarrow\Delta'\ge0\) \(\Leftrightarrow5m-4\Leftrightarrow m\ge\dfrac{4}{5}\)

b) phương trình có nghiệm kép \(\Leftrightarrow\Delta'=0\Leftrightarrow5m-4=0\Leftrightarrow m=\dfrac{4}{5}\) khi đó nghiệm kép là \(x=\dfrac{-b'}{a}=\dfrac{m}{m-1}=\dfrac{\dfrac{4}{5}}{\dfrac{4}{5}-1}=-4\)

a: Để d1//d2 thì k+3=2-k

=>2k=-1

=>k=-1/2

b: Để d1 cắt d2 thì k+3<>2-k

=>k<>-1/2

c: để d1 trùg d2 thì k+3=2-k và -2=1(loại)

d: Để d1 đồng biến thì k+3>0

=>k>-3

e: Để d2 đồng biến thì 2-k>0

=>k<2