Cho PT:x-k=9+k(ẩn x),tìm điều kiện của k để PT có nghiệm không bé hơn 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(kx^2-2\left(k+1\right)x+k+1=0\) (*)
Để pt có hai nghiệm dương <=> Pt (*) là pt bậc 2 <=> \(a\ne0\) hay \(k\ne0\)
Để pt có nghiệm thỏa mãn đề \(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1x_1>0\\x_1< 1< x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}k+1>0\\\dfrac{2\left(k+1\right)}{k}>0\\\dfrac{k+1}{k}>0\\\left(x_1-1\right)\left(x_2-1\right)< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}k>0\\x_1x_2-\left(x_1+x_2\right)+1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k>0\\\dfrac{k+1}{k}-\dfrac{2\left(k+1\right)}{k}+\dfrac{k}{k}< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}k>0\\-\dfrac{1}{k}< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}k>0\\k>0\end{matrix}\right.\)\(\Rightarrow k>0\)
Vậy k>0 thì pt có nghiệm thỏa mãn đề
a) kx2 - 2(k + 1)x + k + 1 = 0
△' = (k + 1)2 - k(k + 1) = k2 + 2k + 1 - k2 - k
= k + 1
Để phương trình có nghiệm thì △' ≥ 0 => k + 1 ≥ 0 => k ≥ -1
Theo hệ thức Vi-et có: \(\left\{{}\begin{matrix}x_1+x_2=2k+2\\x_1.x_2=k+1\end{matrix}\right.\)
Phương trình có 2 nghiệm dương ⇔ \(\left\{{}\begin{matrix}\Delta'\ge0\\x_1+x_2>0\\x_1.x_2>0\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}k+1\ge0\\2k+2>0\\k+1>0\end{matrix}\right.\)
⇔ k > -1
b) Gọi 2 nghiệm của phương trình là x1, x2 => x1 < 1 < x2
=> x1 - 1 < 0; x2 - 1 > 0 => (x1 - 1)(x2 - 1) < 0
⇔ x1.x2 - (x1 + x2) + 1 < 0
⇔ k + 1 - 2k - 2 + 1 < 0
⇔ -k < 0 ⇔ k > 0
Để phương trình có 2 nghiệm phân biệt thì △' = k + 1 > 0 => k > -1
=> Để phương trình có 2 nghiệm thoả mãn đề bài thì k > 0
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne1\\x\ne0\end{matrix}\right.\)
PT \(\Leftrightarrow\dfrac{2x}{x\left(x-1\right)}+\dfrac{k\left(x-1\right)}{x\left(x-1\right)}=\dfrac{k}{x\left(x-1\right)}\)
\(\Leftrightarrow2x+k\left(x-1\right)=k\)
\(\Leftrightarrow2x+kx-k=k\)
\(\Leftrightarrow2x+kx-2k=0\)
\(\Leftrightarrow x\left(k+2\right)=2k\)
- Để phương trình vô nghiệm :
\(\Leftrightarrow\left\{{}\begin{matrix}k+2=0\\2k\ne0\end{matrix}\right.\)
\(\Rightarrow k=-2\) ( TM )
Vậy k = - 2 thỏa mãn yêu cầu đề bài .
\(\dfrac{2}{x-1}+\dfrac{k}{x}=\dfrac{k}{x^2-x}\)
\(\Leftrightarrow\dfrac{2x+kx-k}{x^2-x}=\dfrac{k}{x^2-x}\)
\(\Leftrightarrow\left(2+k\right)x-2k=0\)
PT vô nghiệm khi và chỉ khi \(\left\{{}\begin{matrix}2+k=0\\2k\ne0\end{matrix}\right.\)=> k = -2
Vậy PT vô nghiệm khi k = -2
bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra
bài 1 câu c "
\(4x^2-25+k^2+4kx=0.\)
thay x=-2 vào ta được
\(16-25+k^2+-8k=0\)
\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)
\(k\left(k+1\right)-9\left(k+1\right)=0\)
\(\left(k+1\right)\left(k-9\right)=0\)
vậy k=1 , 9 thì pt nhận x=-2
bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra
bài 3 cũng éo hiểu xác định a ? a ở đâu
1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm
. kết luận của chúa Pain đề như ###
b1 \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)
\(\Leftrightarrow ax-3x=2\)
\(\Leftrightarrow\left(a-3\right)x=2\)
để pt vô nghiệm thì a-3=0 <=>a=3 thì pt vô nghiệm
2,\(4x-k+4=kx+k\)
\(\Leftrightarrow4x-kx=2k-4\)
\(\Leftrightarrow\left(4-k\right)x=2k-4\)
để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)
pt vô nghiệm thì 4-k=0 <=.>k=4
bài 1: ta có : \(\Delta'=\left(m+4\right)^2-\left(2m-1\right)\left(5m+2\right)\)
\(=m^2+8m+16-\left(10m^2+4m-5m-2\right)\)
\(=-9m^2+9m+18=-9 \left(m^2-m-9\right)\)
để phương trình có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow m^2-m-9\le0\Leftrightarrow\left(m-\dfrac{1}{2}\right)^2-\dfrac{37}{4}\le0\)
\(\Leftrightarrow\left(m-\dfrac{1}{2}\right)^2\le\dfrac{37}{4}\Leftrightarrow-\dfrac{\sqrt{37}}{2}\le m-\dfrac{1}{2}\le\dfrac{\sqrt{37}}{2}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{\sqrt{37}}{2}\le m\le\dfrac{\sqrt{37}}{2}+\dfrac{1}{2}\)
bài 2: a) ta có : \(\Delta'=m^2-\left(m-1\right)\left(m-4\right)=5m-4\)
để phương trình có nghiệm \(\Leftrightarrow\Delta'\ge0\) \(\Leftrightarrow5m-4\Leftrightarrow m\ge\dfrac{4}{5}\)
b) phương trình có nghiệm kép \(\Leftrightarrow\Delta'=0\Leftrightarrow5m-4=0\Leftrightarrow m=\dfrac{4}{5}\) khi đó nghiệm kép là \(x=\dfrac{-b'}{a}=\dfrac{m}{m-1}=\dfrac{\dfrac{4}{5}}{\dfrac{4}{5}-1}=-4\)
a: Để d1//d2 thì k+3=2-k
=>2k=-1
=>k=-1/2
b: Để d1 cắt d2 thì k+3<>2-k
=>k<>-1/2
c: để d1 trùg d2 thì k+3=2-k và -2=1(loại)
d: Để d1 đồng biến thì k+3>0
=>k>-3
e: Để d2 đồng biến thì 2-k>0
=>k<2
\(x-k=9+k\)
\(\Leftrightarrow x=9+k+k\)
\(\Leftrightarrow x=9+2k\)
Phương trình có nghiệm không bé hơn 7 \(\Leftrightarrow9+2k\ge7\)
\(\Leftrightarrow2k\ge7-9\)
\(\Leftrightarrow2k\ge-2\)
\(\Leftrightarrow k\ge-1\)
Vậy để phương trình đã cho có nghiệm không bé hơn 7 thì \(k\ge-1\)