Tính tổng
S=\(3+\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{24\cdot47-23}{24+47\cdot23}.\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}\)
\(=\frac{24\cdot\left(24+23\right)-23}{24+\left(24+23\right)\cdot23}\cdot\frac{3\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}{9\left(\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}+1\right)}\)
\(=\frac{24^2+24\cdot23-23}{24+24\cdot23+23^2}\cdot\frac{3}{9}\) \(=\frac{24^2+23\cdot\left(24-1\right)}{\left(23+1\right)\cdot24\cdot23^2}\cdot\frac{1}{3}=1\cdot\frac{1}{3}=\frac{1}{3}\)
\(a)A=\frac{24\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}+\frac{3}{11}+\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}+\frac{9}{13}+\frac{9}{7}+\frac{9}{11}+9}\)
\(=\frac{(23+1)\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}+\frac{3}{11}+\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}+\frac{9}{13}+\frac{9}{7}+\frac{9}{11}+9}=\frac{47-23+24}{47-23+24}\cdot\frac{3(1+\frac{1}{7}+\frac{1}{11}+\frac{1}{1001}+\frac{1}{13})}{3(3+\frac{3}{1001}+\frac{3}{13}+\frac{3}{7}+\frac{3}{11})}\)
\(=\frac{1+\frac{1}{7}+\frac{1}{11}+\frac{1}{1001}+\frac{1}{13}}{3+\frac{3}{1001}+\frac{3}{13}+\frac{3}{7}+\frac{3}{11}}=\frac{1+\frac{1}{1001}+\frac{1}{13}+\frac{1}{7}+\frac{1}{11}}{3(1+\frac{1}{1001}+\frac{1}{13}+\frac{1}{7}+\frac{1}{11})}=\frac{1}{3}\)
\(b)\)\(\text{Đặt A = }1+2+2^2+2^3+...+2^{2012}\)
\(2A=2(1+2^2+2^3+...+2^{2012})\)
\(2A=2+2^2+2^3+...+2^{2013}\)
\(2A-A=(2+2^2+2^3+2^4+...+2^{2013})-(1+2+2^2+2^3+...+2^{2012})\)
\(\Rightarrow A=2^{2013}-1\)
\(\text{Quay lại bài toán,ta có :}\)
\(B=\frac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}=\frac{2^{2013}-1}{2^{2014}-2}=\frac{2^{2013}-1}{2(2^{2013}-1)}=\frac{1}{2}\)
(A) \(\frac{2}{3} + \frac{{ - 4}}{6} = \frac{4}{6} + \frac{{ - 4}}{6} = 0\) => A sai
(B) \(\frac{2}{3}.\frac{{ - 1}}{5} = \frac{{ - 2}}{{15}}\) mà \(\frac{{3 - 2}}{5} = \frac{1}{5}\) => B sai
(C) \(\frac{2}{3} - \frac{3}{5} = \frac{{10}}{{15}} - \frac{9}{{15}} = \frac{1}{{15}}\) => C đúng
(D) \(\frac{3}{5}:\frac{3}{{ - 5}} = \frac{3}{5}.\frac{{ - 5}}{3} = \frac{{ - 15}}{{15}} = - 1\) => D sai
=> Chọn C.
Đặt \(A=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
Nên \(2.A=6+3+\frac{3}{2}+....+\frac{3}{2^8}\)
Suy ra \(2.A-A=6-\frac{3}{2^9}\Rightarrow A=6-\frac{3}{2^9}\)
Vậy giá trị biểu thức là : \(6-\frac{3}{2^9}\)
đặt \(A=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(A=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)( 1 )
\(2B=2+1+\frac{1}{2}+...+\frac{1}{2^8}\)( 2 )
Lấy ( 2 ) - ( 1 ) ta được :
\(B=2-\frac{1}{2^9}\)
\(\Rightarrow A=3.\left(2-\frac{1}{2^9}\right)\)
\(\Rightarrow A=6-\frac{3}{2^9}\)
A. Đặt A= biểu thức đã cho
=>\(\frac{A}{3}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=>\(\frac{A}{3}.2=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
=>\(\frac{2A}{3}-\frac{A}{3}=2-\frac{1}{2^9}\)
=>\(A=\frac{3\left(2^{10}-1\right)}{2^9}\)
B. Đặt B=biểu thức đã cho
\(\Rightarrow\frac{B}{2}=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2015.2017}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(=\frac{1}{3}-\frac{1}{2017}=\frac{2014}{6051}\)
\(\Rightarrow B=\frac{4028}{6051}\)
A=\([\)\(\frac{2}{7}\)\(\times\)(\(\frac{1}{4}-\frac{1}{3}\))\(]\)\(\div\)\([\)(\(\frac{2}{7}\times\)(\(\frac{3}{9}-\frac{2}{5}\))\(]\)
=(\(\frac{2}{7}\times\)\(\frac{-1}{12}\))\(\div(\)\(\frac{2}{7}\times\)\(\frac{-1}{15}\))
=\(\frac{-1}{42}\)\(\div\)\(\frac{-2}{35}\)
=\(\frac{-1}{42}\)\(\times\)\(\frac{35}{-2}\)
=\(\frac{5}{12}\)
Sửa đề + làm bài \(M=\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{9}+\frac{2}{13}}{\frac{11}{3}-\frac{11}{5}+\frac{11}{9}+\frac{11}{13}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{9}+\frac{1}{13}\right)}{11\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{9}+\frac{1}{13}\right)}=\frac{2}{11}\)
Có 1 chỗ bạn ghi sai đề phải là \(\frac{11}{13}\)chứ ko phải \(\frac{11}{3}\)nhé
\(M=\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{9}+\frac{2}{13}}{\frac{11}{3}-\frac{11}{5}+\frac{11}{9}+\frac{11}{13}}\)
\(=\frac{2.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{9}+\frac{2}{13}\right)}{11.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{9}+\frac{1}{13}\right)}\)
\(=\frac{2}{11}\)
Học tốt
\(S=3+\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^9}\)
\(\Rightarrow\frac{1}{2}S=\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+.....+\frac{3}{2^{10}}\)
\(\Rightarrow S-\frac{1}{2}S=\left(3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{3^9}\right)-\left(\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^{10}}\right)\)
\(\Rightarrow\frac{S}{2}=3-\frac{3}{2^{10}}\)
\(\Rightarrow S=\left(3-\frac{3}{2^{10}}\right).2\)\(=6-\frac{3}{2^9}\)
\(S=3\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
\(\Rightarrow2A-A=A=1-\frac{1}{2^9}\)
Do đó \(S=3\left(1-\frac{1}{2^9}\right)=3\left(1-\frac{1}{512}\right)=3-\frac{3}{512}=\frac{1533}{512}\)