K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Lời giải:
$2x-mx+m^2+1=0$

$\Leftrightarrow m^2+1=x(m-2)$

Để pt có nghiệm thì hoặc $m^2+1=m-2=0$ hoặc $m-2\neq 0\Leftrightarrow m\neq 2$

TH thứ nhất thì dễ loại luôn rồi nên $m\neq 2$
Khi đó: $x=\frac{m^2+1}{m-2}$

Để nghiệm không âm thì $\frac{m^2+1}{m-2}\geq 0$

$\Leftrightarrow m-2>0$

$\Leftrightarrow m>2$

Vậy......

5 tháng 5 2023

Cảm ơn ạ!

4 tháng 5 2018

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow2\left(m-1\right)x=2\)

\(\Leftrightarrow x=\frac{2}{m-1}\)

Vì \(2>0\)

\(\Rightarrow m-1>0\)

\(\Rightarrow m>1\)

2 tháng 9 2021

Đặt x^2=t

pt có 4 no pb=>pt2t^2-(m-1)t+m-3=0 có 2 no pb >0

=>\(\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}m^2-2m+1-4m+12>0\\\dfrac{m-3}{2}>0\\m-1>0\end{matrix}\right.\)=>...=>m>3

2 tháng 9 2021

Vậy m>3

NV
21 tháng 4 2022

\(ac=-m^2-1< 0;\forall m\Rightarrow\) phương trình luôn có 2 nghiệm trái dấu với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-m^2-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow m^2-2\left(-m^2-1\right)=3\)

\(\Leftrightarrow3m^2=1\)

\(\Leftrightarrow m^2=\dfrac{1}{3}\)

\(\Leftrightarrow m=\pm\dfrac{1}{\sqrt{3}}\)

21 tháng 4 2022

xét delta 

m2 + 4m2 + 4 = 5m2 + 4 > 0 

=> phương trình luôn có 2 nghiệm x1x2

theo Vi-ét ta có:

\(\left\{{}\begin{matrix}x1+x2=m\\x1x2=-m^2-1\end{matrix}\right.\) 

x12 + x22 = 3 

<=> ( x1 +x2 )2 - 2x1x2 = 3 

<=> m2 + 2m2 + 2 = 3 

<=> 3m2 = 1 

=> m2 = \(\dfrac{1}{3}\)

=> m = +- \(\dfrac{1}{\sqrt{3}}\)

 

16 tháng 5 2022

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx-2=0\)

\(\Leftrightarrow-2x+2mx-m-2=0\)

\(\Leftrightarrow2x\left(m-1\right)=m+2\)

\(\Leftrightarrow x=\dfrac{m+2}{2\left(m-1\right)}\)

Để phương trình có nghiệm là 1 số không âm thì:

\(\left\{{}\begin{matrix}m\ne1\\\dfrac{m+2}{2\left(m-1\right)}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+2\ge0\\2\left(m-1\right)\ge0\end{matrix}\right.hay\left\{{}\begin{matrix}m+2\le0\\2\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-2\\m>1\end{matrix}\right.hay\left\{{}\begin{matrix}m\le-2\\m< 1\end{matrix}\right.\)

\(\Leftrightarrow m>1\) hay \(m\le-2\).

-Vậy \(m>1\) hay \(m\le-2\) thì phương trình có nghiệm là 1 số không âm.

5 tháng 6 2021

cái o kia bị lỗi mọi người bỏ đi

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow-2x+2mx-2=0\)

\(\Leftrightarrow2\left(mx-x-1\right)=0\)

\(\Leftrightarrow mx-x-1=0\)

\(\Leftrightarrow x\left(m-1\right)=1\)

\(\Leftrightarrow x=\frac{1}{m-1}\)

\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)

Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm

13 tháng 1 2023

Ptr có: `\Delta'=[-(m-1)^2]+4m=m^2-2m+1+4m=(m+1)^2 >= 0`

  `=>{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=-4m):}`

  Để ptr có ít nhất `1` nghiệm không âm

`<=>2` nghiệm đều `>= 0`, hoặc có duy nhất `1` nghiệm và `>= 0` hoặc `1` nghiệm `>= 0` và `1` nghiệm `< 0`

`@TH1: 2` nghiệm đều `>= 0`

    `=>{(x_1.x_2 >= 0),(x_1+x_2 >= 0):}`

`<=>{(-4m >= 0),(2m-2 >= 0):}`

`<=>{(m <= 0),(m >= 1):}=>` Không có `m` t/m

`@TH2:` Có duy nhất `1` nghiệm và nghiệm đó `>= 0`

    `=>{((m+1)^2=0),(x=[-b']/a):}`

`<=>{(m=-1),(x=m-1):}`

`<=>{(m=-1),(x=-2):}` (ko t/m `x >= 0`)

`@TH3:` Có `2` nghiệm pb có `1` nghiệm `< 0` và `1` nghiệm `>= 0`

  `=>{(m+1 \ne 0),(x_1.x_2 < 0):}`

`<=>{(m \ne -1),(-4m < 0):}`

`<=>{(m \ne -1),(m > 0):}`

`<=>m > 0`

Vậy `m > 0` thì ptr đã cho có ít nhất `1` nghiệm không âm.

5 tháng 3 2023

Ta có:

\(\text{∆}'=\left(m+1\right)^2-\left(m^2+m\right)\)

\(=m^2+2m+1-\left(m^2+m\right)=m+1\)

Để phương trình có 2 nghiệm phân biệt x1, x2

\(\Leftrightarrow\text{∆}'>0\Leftrightarrow m+1>0\Leftrightarrow m>-1\)

Áp dụng hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+m\end{matrix}\right.\)

Ta có: \(\dfrac{1}{x_1^2}+\dfrac{1}{x^2_2}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{x_1^2+x^2_2}{x_1^2.x_2^2}=\dfrac{1}{8}\)

\(\Leftrightarrow8[\left(x_1+x_2\right)^2-2x_1.x_2]=x_1^2.x_2^2\)

\(\Leftrightarrow8[[2\left(m+1\right)]^2-2\left(m^2+m\right)]=\left(m^2+m\right)^2\)

\(\Leftrightarrow8\left[4m^2+8m+4-2m^2-2m\right]=m^4+2m^3+m^2\)

\(\Leftrightarrow\)\(8\left[2m^2+6m+4\right]=m^4+2m^3+m^2\)

\(\Leftrightarrow m^4+2m^3-15m^2-48m-32=0\)

\(\Leftrightarrow\left(m+1\right)\left(m^3+m^2-16m-32\right)=0\)

Vì m>-1

\(\Leftrightarrow m^3+m^2-16m-32=0\)

Đến đây nghiêm xấu bạn xem lại đề hoặc có thể sử dụng CTN Cardano

12 tháng 3 2023

\(-x^2+\left(m+2\right)x+2m=0\)

\(\Delta=\left(m+2\right)^2+8m=\left(m+6\right)^2-32\)

Để phương trình có 2 nghiệm phân biệt

<=> \(\Delta>0\Leftrightarrow\left(m+2\right)^2>32\Leftrightarrow m>\sqrt{32}-2\)

Vì phương trình có 2 nghiệm phân biệt

Áp dụng hệ thức vi ét

\(\Rightarrow x_1+x_2=m+2\)

=> \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1+4x_2=0\end{matrix}\right.\)

\(\Rightarrow m=-3x_2-2\)

Bạn xem lại đề chứ k tìm được m luôn á

12 tháng 3 2023

Để mai mình hỏi thầy.Chắc thầy giáo mình giao nhầm đề :vv