K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Lời giải:
$2x-mx+m^2+1=0$

$\Leftrightarrow m^2+1=x(m-2)$

Để pt có nghiệm thì hoặc $m^2+1=m-2=0$ hoặc $m-2\neq 0\Leftrightarrow m\neq 2$

TH thứ nhất thì dễ loại luôn rồi nên $m\neq 2$
Khi đó: $x=\frac{m^2+1}{m-2}$

Để nghiệm không âm thì $\frac{m^2+1}{m-2}\geq 0$

$\Leftrightarrow m-2>0$

$\Leftrightarrow m>2$

Vậy......

5 tháng 5 2023

Cảm ơn ạ!

4 tháng 5 2018

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow2\left(m-1\right)x=2\)

\(\Leftrightarrow x=\frac{2}{m-1}\)

Vì \(2>0\)

\(\Rightarrow m-1>0\)

\(\Rightarrow m>1\)

16 tháng 5 2022

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx-2=0\)

\(\Leftrightarrow-2x+2mx-m-2=0\)

\(\Leftrightarrow2x\left(m-1\right)=m+2\)

\(\Leftrightarrow x=\dfrac{m+2}{2\left(m-1\right)}\)

Để phương trình có nghiệm là 1 số không âm thì:

\(\left\{{}\begin{matrix}m\ne1\\\dfrac{m+2}{2\left(m-1\right)}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+2\ge0\\2\left(m-1\right)\ge0\end{matrix}\right.hay\left\{{}\begin{matrix}m+2\le0\\2\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-2\\m>1\end{matrix}\right.hay\left\{{}\begin{matrix}m\le-2\\m< 1\end{matrix}\right.\)

\(\Leftrightarrow m>1\) hay \(m\le-2\).

-Vậy \(m>1\) hay \(m\le-2\) thì phương trình có nghiệm là 1 số không âm.

5 tháng 6 2021

cái o kia bị lỗi mọi người bỏ đi

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow-2x+2mx-2=0\)

\(\Leftrightarrow2\left(mx-x-1\right)=0\)

\(\Leftrightarrow mx-x-1=0\)

\(\Leftrightarrow x\left(m-1\right)=1\)

\(\Leftrightarrow x=\frac{1}{m-1}\)

\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)

Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm

Sửa đề; Tìm m Để cho phương trình có nghiệm không âm

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

=>\(2x^2-2x+mx-m-2x^2+mx+m-2=0\)

=>x(2m-2)-2=0

=>x(2m-2)=2

Để phương trình có nghiệm không âm thì 2m-2<0

=>m<1

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<

27 tháng 4 2018

a,để PT trở thành bậc nhất một ản thì m-3\(\ne0\Leftrightarrow m\ne3\)

                    thay x=2 vào biểu thức ta có m=-143(tm)

8 tháng 4 2021

Thay x = -1 vào phương trình (2x - m)(x + 1) - \(2x^2\) - mx + m - 4 = 0 ta có:

(2.(-1) - m)(-1 + 1) - \(2.\left(-1\right)^2\) - m.(-1) + m - 4=0

⇔ (-2 - m).0 - 2 + m + m - 4 = 0

⇔ 2m - 6 = 0

⇔ 2( m - 3) = 0

⇔ m - 3 = 0

⇔ m = 3

Vậy m = 3

8 tháng 4 2021

(2x-m)(x+1)-2x2-mx+m-4=0

\(\Leftrightarrow\)2x2+2x-mx-m-2x2-mx+m-4=0

\(\Leftrightarrow\)-2mx-4=0

\(\Leftrightarrow\)-2mx=4

Thay x=-1 vào phương trình, ta có:

-2m(-1)=4

\(\Leftrightarrow\)2m=4

\(\Leftrightarrow\)m=2