K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

1/ (5x+2)2+(6x-3y)2=0

Ta nhận thấy: (5x+2)2\(\ge\)0  và (6x-3y)2\(\ge\)0

Tổng của 2 số dương bằng 0 khi và chỉ khi cả 2 số đều bằng 0

=> \(\hept{\begin{cases}\left(5x+2\right)^2=0\\\left(6x-3y\right)^2=0\end{cases}}< =>\hept{\begin{cases}5x+2=0\\2x-y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=-\frac{2}{5}\\y=2x=-\frac{4}{5}\end{cases}}\)

2/ Làm tương tự 1:

\(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(3x-7y\right)^2=0\end{cases}}< =>\hept{\begin{cases}x+2=0\\3x-7y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=-2\\y=\frac{3x}{7}=-\frac{6}{7}\end{cases}}\)

16 tháng 8 2023

a) \(35x^9y^n=5.\left(7x^9y^n\right)\)

Để \(35x^9y^n⋮\left(-7x^7y^2\right)\)

\(\Rightarrow n\in\left\{0;1;2\right\}\)

16 tháng 8 2023

b) \(5x^3-7x^2+x=3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)\)

Để \(\left(5x^3-7x^2+x\right)⋮3x^n\)

\(\Rightarrow3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)⋮3x^n\)

\(\Rightarrow n\in\left\{0;1\right\}\)

16 tháng 12 2022

1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)

=>-13x=0

=>x=0

2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

=>3x=13

=>x=13/3

3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)

=>-2x^2=0

=>x=0

4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

=>-8x=6-14=-8

=>x=1

16 tháng 12 2022

`1)2x(x-5)-(3x+2x^2)=0`

`<=>2x^2-10x-3x-2x^2=0`

`<=>-13x=0`

`<=>x=0`

___________________________________________________

`2)x(5-2x)+2x(x-1)=13`

`<=>5x-2x^2+2x^2-2x=13`

`<=>3x=13<=>x=13/3`

___________________________________________________

`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`

`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`

`<=>x=0`

___________________________________________________

`4)5x(x-1)-(x+2)(5x-7)=0`

`<=>5x^2-5x-5x^2+7x-10x+14=0`

`<=>-8x=-14`

`<=>x=7/4`

___________________________________________________

`5)6x^2-(2x-3)(3x+2)=1`

`<=>6x^2-6x^2-4x+9x+6=1`

`<=>5x=-5<=>x=-1`

___________________________________________________

`6)2x(1-x)+5=9-2x^2`

`<=>2x-2x^2+5=9-2x^2`

`<=>2x=4<=>x=2`

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

a) Ta có: \(2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

b) Ta có: \(2x^3+6x^2=x^2+3x\)

\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)

\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

c) Ta có: \(x^2+\left(x+2\right)\left(11x-7\right)=4\)

\(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)

\(\Leftrightarrow12x^2+15x-18=0\)

\(\Leftrightarrow12x^2+24x-9x-18=0\)

\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\12x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{-2;\dfrac{3}{4}\right\}\)

25 tháng 1 2021

Trong đó có nhiều phương trình kiến thức cơ bản mà nhỉ? Ít nâng cao, bạn lọc ra câu nào k làm đc thôi chứ!

9 tháng 4 2021

Ta có: \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\left(\forall x\right)\\\left(3y+4\right)^{2020}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\left(\forall x,y\right)\)

Mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\left(\forall x,y\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)

Khi đó thay vào ta được: 

\(M+5\cdot\left(\frac{5}{2}\right)^2-2\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)=6\cdot\left(\frac{5}{2}\right)^2+9\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)

\(\Leftrightarrow M+\frac{455}{12}=\frac{103}{18}\)

\(\Rightarrow M=-\frac{1159}{36}\)

2 tháng 9 2016

Bài 1:

a)(4x-3)(3x+2)-(6x+1)(2x-5)+1

=12x2-x-6-12x2+28x+5+1

=27x

b)(3x+4)2+(4x-1)2+(2+5x)(2-5x)

=9x2+24x+16+16x2-8x+1+4-25x2

=16x+21

c)(2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)-9

=8x3+1+8-27x3-9

=-19x3

 

2 tháng 9 2016

Bài 2:

a)3x(x-4)-x(5+3x)=-34

=>3x2-12x-3x2-5x=-34

=>-17x=-34

=>x=2

Vậy x=2

b)(3x+1)2+(5x-2)2=34(x+2)(x-2)

=>9x2+6x+1+25x2-20x+4=34(x2-4)

=>34x2-14x+5-34x2+136=0

=>-14x+141=0

=>-14x=-141

=>x=\(\frac{141}{14}\)

Vậy x=\(\frac{141}{14}\)

c)x3+3x2+3x+28=0

=>x3-x2+7x+4x2-4x+28=0

=>x(x2-x+7)+4(x2-x+7)=0

=>(x+4)(x2-x+7)=0

\(\Rightarrow\left[\begin{array}{nghiempt}x+4=0\\x^2-x+7=0\left(2\right)\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=-4\\\left(2\right)\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}>0\end{array}\right.\)

=>(2) vô nghiệm

Vậy x=-4