Bài 1: Tìm số tự nhiên có 4 chữ số biết rằng nếu viết thêm chữ số 1 vào đằng trước và chữ sô 1 vào đằng sau số đó thì số đó tăng gấp 21 lần.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 4 chữ số cần tìm là x (x ∈ N, 1000 ≤ x ≤ 9999)
Khi viết thêm 1 vào đằng trước và đằng sau số đã cho ta được số có sáu chữ số với chữ số hàng trăm nghìn và chữ số hàng đơn vị đều là chữ số 1. Số mới được viết là: 100000 + 10x + 1
Vì số mới gấp 21 lần số cũ nên ta có phương trình: 100000 + 10x + 1 = 21x
⇔ 11x = 100001 ⇔ x = 9091(tmđk)
Vậy số cần tìm là 9091
Gọi số cần tìm là : abc
Khi đó : abc4 - abc = 1111
<=> abc x 10 + 4 - abc = 111
=> abc x 9 = 1111 - 4
=> abc x 9 = 1107
=> abc = 1107 : 9
=> abc = 123
Bài 1:
Số có 5 chữ số có dạng: \(\overline{abcde}\)
Khi viết thêm chữ số 2 vào đằng sau số đó ta được số mới là:
\(\overline{abcde2}\)
Khi viết thêm chữ số 2 vào đằng trước số đó ta được số mới là: \(\overline{2abcde}\)
Theo bài ra ta có: \(\overline{abcde2}\) = \(\overline{2abcde}\) \(\times\) 3
10\(\times\)\(\overline{abcde}\) + 2 = (200000 + \(\overline{abcde}\))\(\times\) 3
\(\overline{abcde}\) \(\times\)10 + 2 = 600000 + \(\overline{abcde}\)\(\times\) 3
\(\overline{abcde}\) \(\times\) 10 - \(\overline{abcde}\) \(\times\) 3 = 600000 - 2
\(\overline{abcde}\) \(\times\) ( 10 - 3) = 599998
7\(a\) = 599998
\(a\) = 599998: 7
\(a\) = 85714
Bài 2: Số có hai chữ số có dạng: \(\overline{ab}\)
Khi viết thêm chữ số 1 vào bên trái số và bên phải số đó ta có số mới là: \(\overline{1ab1}\)
Theo bài ra ta có: \(\overline{1ab1}\) = \(\overline{ab}\) \(\times\) 23
1001 + \(\overline{ab}\) \(\times\) 10 = \(\overline{ab}\) \(\times\) 23
\(\overline{ab}\) \(\times\) 23 - \(\overline{ab}\) \(\times\) 10 = 1001
\(\overline{ab}\) \(\times\)(23 - 10) = 1001
\(\overline{ab}\) \(\times\) 13 = 1001
\(\overline{ab}\) = 1001: 13
\(\overline{ab}\) = 77
Kết luận: Số thỏa mãn đề bài là 77
Gọi số phải tìm là abcde
Ta có phép nhân
abcde7
x 4
=7abcde
Lần lượt tìm các chữ số
7x4 có tận cùng là e =>e=8 nhớ 2
4e+2 có tận cùng bằng d =>d=4 nhớ 3
4d +3 có tận cùng bằng c =>c=9 nhớ 1
4c +1 có tận cùng bằng b =>b=7 nhớ 3
4b +3 có tận cùng bằng a =>a=1 nhớ 3
4a +3 có tận cùng bằng 7 (đúng với kết quả vừa tìm)
Vậy abcde=17948
thử lại 179487x4=717948
ta có sơ đồ số mới 10 phần số cũ 1 phần dư 5 đơn vị vì nếu viết thêm chữ số 5 vào bên phải số đó thì nó tăng 10 lần 5 đơn vị
số đó là : (1112-5) : 9 x1 = 123
đáp số 123
nhớ cho mình nha
B2:Gọi số cần tìm là ab(a khác 0,a;b <10,a;b là chữ số)
Nếu viết thêm chữ số 1 vào đằng trước ta có số 1ab
Ta có:
ab.21=1ab
ab.21=100+ab
ab.20=100
ab=100:20
ab=05
Vậy số cần tìm là 05
Goi so can tim la : abcd ( 0<a <= 9; 0 <= b,c,d <= 9) (<= : nhỏ hơn hoặc bằng)
Ta có : 1abcd1 =21*abcd
<=> 100 000+10*abcd +1=21*abcd
<=> 100 001=11*abcd
<=> abcd = 9091
Goi so can tim la : abcd ( 0<a <= 9; 0 <= b,c,d <= 9) (<= : nhỏ hơn hoặc bằng)
Ta có : 1abcd1 =21*abcd
<=> 100 000+10*abcd +1=21*abcd
<=> 100 001=11*abcd
<=> abcd = 9091