K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

dài thế bị rảnh à

25 tháng 4 2017

type nhanh mà bạn

4 tháng 4 2017

a, QUY ĐỒNG PHÂN SỐ :

MSC=280

\(\frac{2}{5}\)\(=\)\(\frac{112}{280}\)

\(\frac{4}{7}\)\(=\)\(\frac{160}{280}\)

\(\frac{5}{8}\)\(=\)\(\frac{175}{280}\)

mà \(\frac{112}{280}\)\(< \)\(\frac{160}{280}\)\(< \)\(\frac{175}{280}\)\(=>\)\(\frac{2}{5}\)\(< \)\(\frac{4}{7}\)\(< \)\(\frac{5}{8}\)

k cho anh nha anh mỏi tay quá lên chỉ làm dc câu a tý làm câu b sau

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:
Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{2004}}\)

Xét số hạng tổng quát: \(\frac{1}{\sqrt{n}}\) ta có:

\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}> \frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2(\sqrt{n+1}-\sqrt{n})}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}=2(\sqrt{n+1}-\sqrt{n})\)

Do đó:

\(\frac{1}{\sqrt{1}}> 2(\sqrt{2}-\sqrt{1})\)

\(\frac{1}{\sqrt{2}}> 2(\sqrt{3}-\sqrt{2})\)

\(\frac{1}{\sqrt{3}}> 2(\sqrt{4}-\sqrt{3})\)

............

\(\frac{1}{\sqrt{2004}}> 2(\sqrt{2005}-\sqrt{2004})\)

Cộng theo vế:
$A>2(\sqrt{2005}-1)>86$

Vậy..........