Cho Δ ABC vuông tại A, đường phân giác BI (I ∈ AC). Kẻ IM vuông góc với BC ( M ∈ BC). Gọi N là giao điểm của AB và IM.
a) Chứng minh: Δ ABI =Δ MBI và BI là đường trung trực của đoạn thẳng AM
b) Chứng minh IN = IC
c) Chứng minh BI vuông góc với NC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét tg vuông ABE và tg vuông HBE có
BE chung
\(\widehat{ABE}=\widehat{HBE}\) (gt)
=> tg ABE = tg HBE (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
b/
tg ABE = tg HBE (cmt) => AB = HB => tg BAH cân tại B
\(\widehat{ABE}=\widehat{HBE}\)
=> BE là trung trực của AH (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)
c/
Xét tg vuông KBH và tg vuông ABC có
\(\widehat{B}\) chung
AB = HB (cmt)
=> tg KBH = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) => BK=BC
Xét tg BKE và tg BCE có
BE chung
\(\widehat{ABE}=\widehat{HBE}\) (gt)
BK=BC (cmt)
=> tg BKE = tg BCE (c.g.c) => EK = EC
d/
Xét tg vuông AKE có
AE<EK (trong tg vuông cạnh huyền là cạnh có độ dài lớn nhất
Mà EK=EC (cmt)
=> AE<EC
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
a/ \(\Delta ABC\)vuông tại A => BC2 = AB2 + AC2 (định lí Pythagore)
=> BC2 = 62 + 82
=> BC = \(\sqrt{6^2+8^2}\)
=> BC = \(\sqrt{100}\)= 10 (cm)
b/ \(\Delta ABI\)vuông và \(\Delta HBI\)vuông có: \(\widehat{ABI}=\widehat{HBI}\)(BI là phân giác \(\widehat{B}\))
Cạnh huyền BI chung
=> \(\Delta ABI\)vuông = \(\Delta HBI\)vuông (ch - gn) (đpcm)
a: Xét ΔBAI vuông tại Avà ΔBHI vuông tại H có
BI chung
góc ABI=góc HBI
=>ΔBAI=ΔBHI
b: ΔBAI=ΔBHI
=>BA=BH và IA=IH
=>BI là trung trực của AH
d: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại I
=>I là trực tâm
=>BI vuông góc KC
Xét Δ ADB và Δ EDB có:
\(BDcạnhchung\)
\(\widehat{BAD}=\widehat{BED}\)
\(\widehat{ABD}=\widehat{EBD}\)
=> Δ ADB = Δ EDB
Ta có:
AB = BE
=> △BAE cân tại B
Trong △BAE cân tại B có:
BD là đường phân giác
=> BD là đường cao
=> BD ⊥ AE
Xét △ADF và △ ADC có:
\(\widehat{ADF}=\widehat{EDC}\)
AD = DE
\(\widehat{FAD}=\widehat{CED}\)
=> △ADF = △ ADC
=> FD = CD (2 cạnh tương ứng)
Ta có:
AF = AB + AF
BC = BE + EC
AB = BE
AF = EC
nên AF = BC
=> △FBC cân tại B
Trong △FBC cân tại B có:
BD là đường phân giác
=> BD là đường cao
=> BD ⊥ FC
Ta có:
BD ⊥ AE
BD ⊥ FC
=> AE // FC
\(\text{#TNam}\)
`a,`
Xét Tam giác `ABI` và Tam giác `MBI` có:
`\text {BI chung}`
\(\widehat{ABI}=\widehat{MBI} (\text {tia phân giác}\) \(\widehat{ABM} )\)
\(\widehat{BAI}=\widehat{BMI}=90^0\)
`=> \text {Tam giác ABI = Tam giác MBI (ch-gn)}`
`=> BA = BM (\text {2 cạnh tương ứng})`
Gọi `H` là giao điểm của `BI` với `AM`
Xét Tam giác `HAB` và Tam giác `HMB` có:
\(\text{BA = BM (CMT)}\)
\(\widehat{ABH}=\widehat{MBH} (\text {tia phân giác} \widehat{ABM})\)
`\text {BH chung}`
`=> \text {Tam giác HAB = Tam giác HMB (c-g-c)}`
`-> \text {HA = HM (2 cạnh tương ứng)}`
`->`\(\widehat{BHA}=\widehat{BHM} (\text {2 góc tương ứng})\)
Mà `2` góc này nằm ở vị trí kề bù
`->`\(\widehat{BHA}+\widehat{BHM}=180^0\)
`->`\(\widehat{BHA}=\widehat{BHM}=\)`180/2=90^0`
`-> \text {BH} \bot \text {AM}`
Ta có: \(\left\{{}\begin{matrix}BH\perp AM\\HA=HM\end{matrix}\right.\)
`->` \(\text{BI là đường trung trực của AM.}\)
`b,`
Xét Tam giác `BAC` và Tam giác `BMN` có:
\(\widehat{B} \) `\text {chung}`
`BA = BM (a)`
\(\widehat{BAC}=\widehat{BMN}=90^0\)
`=> \text {Tam giác BAC = Tam giác BMN (g-c-g)}`
`-> \text {BN = BC (2 cạnh tương ứng)}`
Xét Tam giác `BIN` và Tam giác `BIC` có:
`BN = BC (CMT)`
\(\widehat{NBI}=\widehat{CBI} (\text {tia phân giác} \widehat{NBC})\)
`\text {BI chung}`
`=> \text {Tam giác BIN = Tam giác BIC (c-g-c)}`
`-> \text {IN = IC (2 cạnh tương ứng)}`
`c,`
Gọi `K` là giao điểm của `BI` và `NC`
Xét Tam giác `NBK` và Tam giác `CBK` có:
`BN = BC (CMT)`
\(\widehat{NBK}=\widehat{CBK} (\text {tia phân giác} \widehat{NBC})\)
`\text {BK chung}`
`=> \text {Tam giác NBK = Tam giác CBK (c-g-c)}`
`->`\(\widehat{BKN}=\widehat{BKC} (\text {2 góc tương ứng})\)
Mà `2` góc này nằm ở vị trí kề bù
`->`\(\widehat{BKN}+\widehat{BKC}=180^0\)
`->`\(\widehat{BKN}=\widehat{BKC}=\)`180/2=90^0`
`-> \text {BK} \bot \text {NC}`
`-> \text {BI} \bot \text {NC (đpcm)}`