Sau khi đi được 2/3 quãng đường dự định, một xe máy tăng vận tốc lên 20%. Vì vậy xe máy đã đến sớm 15 phút so với dự định. Hỏi thời gian xe máy dự định đi toàn bộ quãng đường là bao lâu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi \(30phút=\dfrac{1}{2}\left(h\right)\)
Gọi vận tốc dự định của xe máy là x (km/h; x > 0 )
Thì vận tốc đi nửa quãng đường còn lại là \(x+10\)
Nửa quãng đường là : \(\dfrac{1}{2}.120=60\left(km\right)\)
Thời gian xe dự định đi từ A đến B là \(\dfrac{120}{x}\left(h\right)\)
Thời gian xe đi được nửa quãng đường đầu là \(\dfrac{60}{x}\left(h\right)\)
Thời gian xe đi nửa quãng đường còn lại khi tăng thêm 10km/h là \(\dfrac{60}{x+10}\)
Vì tăng thêm 10km/h ở nửa sau quãng đường nên xe đến B sớm hơn \(\dfrac{1}{2}\left(h\right)\) so với dự định nên ta có phương trình.
\(\dfrac{60}{x}+\dfrac{60}{x+10}+\dfrac{1}{2}=\dfrac{120}{x}\)
\(\Leftrightarrow120\left(x+10\right)+120x+x\left(x+10\right)=240\left(x+10\right)\)
\(120x+1200+120x+x^2+10x=240x+2400\)
\(\Leftrightarrow x^2+120x+120x+10x-240x+1200-2400=0\)
\(\Leftrightarrow x^2+10x-1200=0\)
\(\Leftrightarrow x^2-30x+40x-1200=0\)
\(\Leftrightarrow x\left(x-30\right)+40\left(x-30\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-30\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+40=0\\x-30=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\left(loại\right)\\x=30\left(nhận\right)\end{matrix}\right.\)
Vậy vận tốc dự định của xe máy là 30km/h
Gọi vận tốc dự định của xe máy là x ( km/h x > 0 )
Thời gian xe máy dự định đi từ A đến B = 120/x ( giờ )
Vận tốc xe đi nửa quãng đường sau = x + 10 (km/h)
Thời gian xe máy đi nửa quãng đường đầu = 60/x ( giờ )
Thời gian xe máy đi nửa quãng đường sau = 60/(x+10) giờ )
Theo bài ra ta có phương trình : 60x+60x+10=120x−1260x+60x+10=120x−12
Giải phương trình thu được x = -40 ( loại ) ; x = 30 ( tm )
Vậy vận tốc dự định của xe máy là 30km/h
Gọi vận tốc dự định của xe máy là x ( km/h x > 0 )
Thời gian xe máy dự định đi từ A đến B = 120/x ( giờ )
Vận tốc xe đi nửa quãng đường sau = x + 10 (km/h)
Thời gian xe máy đi nửa quãng đường đầu = 60/x ( giờ )
Thời gian xe máy đi nửa quãng đường sau = 60/(x+10) giờ )
Theo bài ra ta có phương trình : \(\frac{60}{x}+\frac{60}{x+10}=\frac{120}{x}-\frac{1}{2}\)
Giải phương trình thu được x = -40 ( loại ) ; x = 30 ( tm )
Vậy vận tốc dự định của xe máy là 30km/h
Gọi x là v.tốc dự định của xe(x>0, km/h)
Nửa quãng đường xe đi là: 120:2=60(km)
=> Vận tốc đi nửa quãng đường là: \(\dfrac{60}{x}\) (km/h)
=> Thời gian đi dự định là: \(\dfrac{120}{x}\left(h\right)\)
Vì nửa qquangx đường sau xe đi với thời gian là: \(\dfrac{60}{x+10}\left(h\right)\)
Theo bra ta có:
\(\dfrac{60}{x}+\dfrac{60}{x+10}=\dfrac{120}{x}-0.5\)
Gải được x=40(tmđk)
Vậy v.tốc dự định là 40km/h
bn giupd mk bài ngữ văn ik r mk giúp cô giáo dạy toán lp tui chữa bài nay r nek
Bài giải :
Vận tốc của xe máy khi tăng thêm là :
120 : 30 = 40 ( km/h )
Vận tốc dự định của xe máy là :
40 - 10 = 30 ( km/h )
Đ/s : 30 km/h
Chúc bạn học tốt
Đổi 30h\(=\dfrac{1}{2}\left(h\right)\)
Gọi vận tốc dự định của xe máy là x>0 km/h
Thời gian dự định đi hết quãng đường: \(\dfrac{120}{x}\) giờ
Thời gian đi nửa quãng đường đầu: \(\dfrac{60}{x}\) giờ
Thời gian đi nửa quãng đường sau: \(\dfrac{60}{x+10}\) giờ
Theo bài ra ta có pt:
\(\dfrac{60}{x}+\dfrac{60}{x+10}=\dfrac{120}{x}-\dfrac{1}{2}\)
\(\Leftrightarrow120x=120\left(x+10\right)-x\left(x+10\right)\)
\(\Leftrightarrow x^2+10x-1200=0\Rightarrow\left[{}\begin{matrix}x=30\\x=-40\left(loại\right)\end{matrix}\right.\)
Vậy...
Gọi vận tốc dự định của xe máy là x ( x >0) đơn vị km/h
30p = 0,5h
Có quãng đường dài 120km -> Tgian xe máy dư định đi là \(t=\frac{s}{v}=\frac{120}{x}\)( giờ)
Theo đề ta có được :
\(\frac{60}{x}+\frac{60}{x+10}=\frac{120}{x}-0,5\)
\(\Leftrightarrow\frac{60\left(x+10\right)}{x\left(x+10\right)}+\frac{60x}{x\left(x+10\right)}=\frac{120}{x}-\frac{0,5x}{x}\)
\(\Leftrightarrow\frac{60x+600}{x\left(x+10\right)}+\frac{60x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\frac{60x+600+60x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\frac{600+120x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\left(600+120x\right)\cdot x=\left(120-0,5x\right)\cdot x\left(x+10\right)\)
Từ đây tiếp tục làm tiếp :>
Tỉ số vận tốc lúc đầu so với vận tốc lúc sau khi xe máy đi trên quãng đường còn lại là: 20% = \(\dfrac{1}{5}\)
Tỉ số thời gian xe máy đi trên quãng đường còn lại với vận tốc lúc đầu so với thời gian xe máy đi với vận tốc lúc sau trên quãng đường còn lại là:
1 : \(\dfrac{1}{5}\) = \(\dfrac{5}{1}\)
Đổi 15 phút = 0,25 giờ
Theo bài ra ta có sơ đồ:
Theo sơ đồ ta có:
Thời gian xe máy đi hết quãng đường còn lại với vận tốc lúc đầu là:
0,25 : ( 5-1) \(\times\) 5 = \(\dfrac{5}{16}\) ( giờ)
Phân số chỉ quãng đường còn lại người đó còn phải đi là:
1 - \(\dfrac{2}{3}\) = \(\dfrac{1}{3}\)
Thời gian người đó đi cả quãng đường với vận tốc dự định lúc đầu là:
\(\dfrac{5}{16}\) : \(\dfrac{1}{3}\) = \(\dfrac{15}{16}\) ( giờ)
Đổi \(\dfrac{15}{16}\) giờ = 56 phút 15 giây
Đáp số 56 phút 15 giây
eos bit