K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2023

\(\dfrac{3}{1-x}-\dfrac{2}{x+2}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\left(x\ne1;x\ne-2\right)\)

\(< =>\dfrac{-3}{x-1}-\dfrac{2}{x+2}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\)

\(< =>\dfrac{-3\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\dfrac{2\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\)

suy ra

`-3(x+2)-2(x-1)=x+8`

`<=>-3x-6-2x+2=x+8`

`<=>-3x-2x-x=8+6-2`

`<=>-6x=12`

`<=>x=-2(ktmđk)`

Vậy phương trình vô nghiệm

=>-3(x+2)-2x+2=x+8

=>-3x-6-2x+2=x+8

=>-5x-4=x+8

=>-6x=12

=>x=-2(loại)

NV
6 tháng 4 2021

Em coi lại đề bài, \(8\left(x+\dfrac{1}{x}\right)\) hay \(8\left(x+\dfrac{1}{x}\right)^2\) nhỉ?

 

a: ĐKXĐ: \(x\notin\left\{2;5\right\}\)

\(\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)

=>\(\dfrac{6x+1}{\left(x-2\right)\left(x-5\right)}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)

=>\(6x+1+5\left(x-5\right)=3\left(x-2\right)\)

=>6x+1+5x-25-3x+6=0

=>8x-18=0

=>8x=18

=>\(x=\dfrac{9}{4}\left(nhận\right)\)

b: Đề thiếu vế phải rồi bạn

c: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)

\(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)^2}{x^2-2x-3}\)

\(\Leftrightarrow\dfrac{-1}{x-3}-\dfrac{1}{x+1}-\dfrac{x}{x-3}=\dfrac{-\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}\)

=>\(\dfrac{x+1}{x-3}+\dfrac{1}{x+1}=\dfrac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}\)

=>\(\left(x+1\right)^2+x-3=\left(x-1\right)^2\)

=>\(x^2+2x+1+x-3=x^2-2x+1\)

=>\(3x-2=-2x+1\)

=>5x=3

=>\(x=\dfrac{3}{5}\left(nhận\right)\)

5 tháng 1

bằng 0 nha

30 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  

18 tháng 9 2023

loading...  

18 tháng 9 2023

a) \(\left(x+1\right)\left(x-1\right)\left(3x-6\right)>0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow\left[{}\begin{matrix}-1< x< 1\\x>2\end{matrix}\right.\)

b) \(\dfrac{x+3}{x-2}\le0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow-3\le x< 2\)

d) \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)

\(\Leftrightarrow\dfrac{2x-5}{3x+2}-\dfrac{3x+2}{2x-5}< 0\)

\(\Leftrightarrow\dfrac{\left(2x-5\right)^2-\left(3x+2\right)^2}{\left(3x+2\right)\left(2x-5\right)}< 0\)

\(\Leftrightarrow\dfrac{\left(2x-5+3x+2\right)\left(2x-5-3x-2\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)

\(\Leftrightarrow\dfrac{-\left(5x-3\right)\left(x+7\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow\left[{}\begin{matrix}-7< x< -\dfrac{2}{3}\\\dfrac{5}{3}< x< \dfrac{5}{2}\end{matrix}\right.\)

a: \(2^{x^2-1}=256\)

=>\(2^{x^2-1}=2^8\)

=>\(x^2-1=8\)

=>\(x^2=9\)

=>\(x\in\left\{3;-3\right\}\)

b: \(3^{x^2+3x}=81\)

=>\(3^{x^2+3x}=3^4\)

=>\(x^2+3x=4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

c: \(2^{x^2-5x}=64\)

=>\(2^{x^2-5x}=2^6\)

=>\(x^2-5x=6\)

=>\(x^2-5x-6=0\)

=>(x-6)(x+1)=0

=>\(\left[{}\begin{matrix}x-6=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\)

d: \(\left(\dfrac{1}{3}\right)^x=243\)

=>\(\left(\dfrac{1}{3}\right)^x=3^5=\left(\dfrac{1}{3}\right)^{-5}\)

=>x=-5

e: \(\left(\dfrac{1}{3}\right)^{x+5}=3^{2x+1}\)

=>\(3^{-x-5}=3^{2x+1}\)

=>-x-5=2x+1

=>-3x=6

=>x=-2

a) ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{3x^2+7x-10}{x}=0\)

Suy ra: \(3x^2+7x-10=0\)

\(\Leftrightarrow3x^2-3x+10x-10=0\)

\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{10}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{10}{3}\right\}\)

21 tháng 2 2021

a/ \(\dfrac{3x^2+7x-10}{x}=0\)

\(< =>3x^2+7x-10=0\)

\(< =>3x^2+10x-3x-10=0\)

\(< =>\left(3x^2+10x\right)-\left(3x+10\right)=0\)

\(< =>x\left(3x+10\right)-\left(3x+10\right)=0\)

\(< =>\left(3x+10\right)\left(x-1\right)=0\)

\(=>\left\{{}\begin{matrix}3x+10=0=>x=-\dfrac{10}{3}\\x-1=0=>x=1\end{matrix}\right.\)

Vậy tập nghiệm của .....

 

 

 

b)

ĐKXĐ: \(x\notin\left\{2;3;\dfrac{1}{2}\right\}\)

Ta có: \(\dfrac{x+4}{2x^2-5x+2}+\dfrac{x+1}{2x^2-7x+3}=\dfrac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\dfrac{x+4}{\left(x-2\right)\left(2x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(2x-1\right)}=\dfrac{2x+5}{\left(2x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(2x-1\right)\left(x-3\right)\left(x-2\right)}\)

Suy ra: \(x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)

\(\Leftrightarrow2x^2-14=2x^2+x-10\)

\(\Leftrightarrow2x^2-14-2x^2-x+10=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow-x=4\)

hay x=-4(nhận)

Vậy: S={-4}

NV
18 tháng 3 2021

1a.

ĐKXĐ: \(x\ne\left\{1;3\right\}\)

\(\Leftrightarrow\dfrac{6}{x-1}=\dfrac{4}{x-3}+\dfrac{4}{x-3}\)

\(\Leftrightarrow\dfrac{3}{x-1}=\dfrac{4}{x-3}\Leftrightarrow3\left(x-3\right)=4\left(x-1\right)\)

\(\Leftrightarrow3x-9=4x-4\Rightarrow x=-5\)

b.

ĐKXĐ: \(x\ne\left\{-1;2\right\}\)

\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{3}{2-x}+\dfrac{1}{2-x}\)

\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{4}{2-x}\Leftrightarrow5\left(2-x\right)=4\left(x+1\right)\)

\(\Leftrightarrow10-2x=4x+4\Leftrightarrow6x=6\Rightarrow x=1\)

NV
18 tháng 3 2021

1c.

ĐKXĐ: \(x\ne\left\{2;5\right\}\)

\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{-3x}{\left(x-2\right)\left(x-5\right)}\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)=-3x\)

\(\Leftrightarrow2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\left(loại\right)\end{matrix}\right.\)

2a.

\(\Leftrightarrow-4x^2-5x+6=x^2+4x+4\)

\(\Leftrightarrow5x^2+9x-2=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)

2b.

\(2x^2-6x+1=0\Rightarrow x=\dfrac{3\pm\sqrt{7}}{2}\)

30 tháng 12 2023

a: \(\left(3x+2\right)^2-\left(3x-2\right)^2=5x+38\)

=>\(9x^2+12x+4-\left(9x^2-12x+4\right)-5x-38=0\)

=>\(9x^2+7x-34-9x^2+12x-4=0\)

=>19x-38=0

=>19x=38

=>x=38/19=2

b: \(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)

=>\(x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\)

=>\(x^3+3x^2+12x-9=x^3+3x^2+3x+1\)

=>12x-9=3x+1

=>12x-3x=1+9

=>9x=10

=>x=10/9