Sử dụng công thức con tính lũy thừa Giai thừa 5!= 1 x 2 x 3 x 4 x 5 = 120 3^2 2^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}P(x) = 5{x^3} + 2{x^4} - {x^2} + 3{x^2} - {x^3} - 2{x^4} - 4{x^3}\\ = \left( {2{x^4} - 2{x^4}} \right) + \left( {5{x^3} - {x^3} - 4{x^3}} \right) + \left( { - {x^2} + 3{x^2}} \right)\\ = 0 + 0 + 2{x^2}\\ = 2{x^2}\\Q(x) = 3x - 4{x^3} + 8{x^2} - 5x + 4{x^3} + 5\\ = \left( { - 4{x^3} + 4{x^3}} \right) + 8{x^2} + \left( {3x - 5x} \right) + 5\\ = 0 + 8{x^2} + ( - 2x) + 5\\ = 8{x^2} - 2x + 5\end{array}\)
b) P(1) = 2.12 = 2
P(0) = 2. 02 = 0
Q(-1) = 8.(-1)2 – 2.(-1) +5 = 8 +2 +5 =15
Q(0) = 8.02 – 2.0 + 5 = 5
a) Ta có:
\(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3+3x^5-2x^2-x^4+1\)
\(f\left(x\right)=\left(-x^5+3x^5\right)+\left(3x^4-x^4\right)+\left(2x^3-\dfrac{1}{2}x^3\right)+\left(x^2-2x^2\right)+1\)
\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)
Sắp xếp đa thức f(x) the lũy thừa giảm dần của biến, ta được:
\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)
b) Bậc của đa thức f(x) là 5
c) Ta có:
\(f\left(1\right)=2\cdot1^5+2\cdot1^4+\dfrac{3}{2}\cdot1^3-1^2+1=5,5\) . Vậy f(1) = 5,5.
\(f\left(-1\right)=2\cdot\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)^3-\left(-1\right)^2+1=-1,5\). Vậy f(-1) = -1,5.
b: \(3^4\cdot3^5:\dfrac{1}{27}==3^9\cdot3^3=3^{12}\)
a) G(x) = 2x5-4x4-10x3+3x2-4x-8
H(x) = x5-2x4-5x3+x2+7x-4
b) G(x)+H(x)=3x5-6x4-15x3+4x2+3x-12
G(x)-H(x) =x5-2x4-5x3+2x2-11x-4
c) G(x) = 2H(x)
2x5-4x4-10x3+3x2-4x-8=2( x5-2x4-5x3+x2+7x-4)
2x5-4x4-10x3+3x2-4x-8-2( x5-2x4-5x3+x2+7x-4)=0
2x5-4x4-10x3+3x2-4x-8-2x5+4x4+10x3-2x2-14x+8=0
x2-18x=0
x(x-18)=0
x=0 hoặc x-18=0
x=18
\(a,\)
\(\Rightarrow f\left(x\right)=x^4-x^3+3x-1\)
\(\Rightarrow g\left(x\right)=x^4+4x^3+x-5\)
\(b,\)
\(A\left(x\right)=f\left(x\right)-g\left(x\right)=x^4-x^3+3x-1-x^4-4x^3-x+5\)
\(=-5x^3-x+4\)
\(B\left(x\right)=f\left(x\right)+g\left(x\right)=x^4-x^3+3x-1+x^4+4x^3+x-5\)
\(=2x^4+3x^3+4x-6\)
\(c,\)
Thay \(x=-2\) vào \(A\left(x\right)\) , ta được :
\(A\left(x\right)=-5.\left(-2\right)^3+2+4=46\)
Thay \(x=2\) vào \(A\left(x\right)\) , ta được :
\(A\left(x\right)=-5.2^3-2+4=-38\)
# Tính lũy thừa
a = 3
n = 2
power = a ** n
print(power) # Kết quả: 9
# Tính giai thừa
n = 5
factorial = 1
for i in range(1, n+1):
factorial *= i
print(factorial) # Kết quả: 120