K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

1/3.[1-1/4+1/4-1/7+......+1/67-1/70]

=1/3.[1-1/70]

=1/3.69/70=23/70<1

xong roi k di

23 tháng 4 2017

=(1-1/4)+(1/4-1/7)+....+(1/67-1/70)

=1-1/4+1/4-1/7+......+1/67-1/70

=1-1/70

=69/70

đúng 100%

4 tháng 2 2020

A = \(\frac{1}{1.4}\)\(\frac{1}{4.7}\)+\(\frac{1}{7.10}\)+...+ \(\frac{1}{2014.2017}\)
3A = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{2014.2017}\)
3A = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{2014}-\frac{1}{2017}\)
3A= 1 - \(\frac{1}{2017}\)
A = \(\frac{1}{3}-\frac{1}{2017.3}\)
A = \(\frac{672}{2017}\)

4 tháng 2 2020

Ta có \(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2014.2017}\)

\(\Rightarrow A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{3}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{3}.\frac{2016}{2017}=\frac{672}{2017}\)

Vậy \(A=\frac{672}{2017}\)

~ Học tốt

# Chiyuki Fujito

21 tháng 5 2018

\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{95\cdot98}\)

\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{95\cdot98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\cdot\frac{48}{98}\)

\(A=\frac{16}{98}=\frac{8}{49}\)

\(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)

\(B=2\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{97\cdot100}\right)\)

\(B=2\left[\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\right]\)

\(B=2\left[\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\right]\)

\(B=2\left[\frac{1}{3}\left(1-\frac{1}{100}\right)\right]\)

\(B=2\left[\frac{1}{3}\cdot\frac{99}{100}\right]\)

\(B=2\cdot\frac{33}{100}\)

\(B=\frac{33}{50}\)

21 tháng 5 2018

A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)

3A = 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98

3A = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98

3A = 1/2 - 1/98

3A = 24/49

A = 24/49 : 3

A = 72/49

B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/97.100

3/2B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100

3/2B = 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100

3/2B = 1 - 1/100

3/2B = 99/100

B = 99/100 : 3/2

B = 33/50

5 tháng 5 2016

Có A=\(\frac{4}{1.4}+\frac{4}{4.7}+\frac{4}{7.10}+.........+\frac{4}{67.70}\)

      A=\(\frac{4}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+............+\frac{3}{67.70}\right)\)

      A=\(\frac{4}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-..........-\frac{1}{70}\right)\)

      A=\(\frac{4}{3}.\left(1-\frac{1}{70}\right)\)

      A=\(\frac{4}{3}.\frac{69}{70}=\frac{46}{35}\)

Vì \(\frac{46}{35}>\frac{9}{7}\) nên A>\(\frac{9}{7}\)

5 tháng 5 2016

\(A=\frac{4}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-....-\frac{1}{70}\right)\)

\(A=\frac{4}{3}.\left(1-\frac{1}{70}\right)=\frac{4}{3}\cdot\frac{69}{70}=\frac{46}{35}>\frac{9}{7}\)

Vậy A >9/7

27 tháng 4 2016

Ta thấy: 1/1-1/4 = 3/4 = 3.(1/1.4)

           1/4-1/7 = 3/28 = 3.(1/4.7)

A = 3(1/1-1/4+1/4-1/7+...+1/97-1/100)

A = 3.(1-1/100)

A = 3.(99/100)

A = 297/100

27 tháng 4 2016

\(A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\frac{99}{100}\)

\(A=\frac{33}{100}\)

29 tháng 6 2017

a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.....+\frac{5}{27.30}\)

\(=\frac{5}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+........+\frac{1}{27.30}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{27}-\frac{1}{30}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{30}\right)\)

\(=\frac{5}{3}.\frac{29}{30}=\frac{29}{36}\)

1 tháng 7 2017

Đặt \(A=\frac{12}{3\cdot5}+\frac{12}{5\cdot7}+\frac{12}{7\cdot9}+....+\frac{12}{97\cdot99}\)

\(2A=\frac{12}{3}-\frac{12}{5}+\frac{12}{5}-\frac{12}{7}+...+\frac{12}{97}-\frac{12}{99}\)

\(2A=\frac{12}{3}-\frac{12}{99}\)

\(A=\frac{128}{33}\cdot\frac{1}{2}=\frac{64}{33}\)

24 tháng 8 2015

\(\frac{x}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+....+\frac{1}{100.103}=\frac{102}{103}\)

\(\Leftrightarrow\frac{x-1}{1.4}+\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\right)=\frac{102}{103}\)

\(\Leftrightarrow\frac{3\left(x-1\right)}{1.4}+\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{306}{103}\)

\(\Leftrightarrow\frac{3\left(x-1\right)}{1.4}+\frac{102}{103}=\frac{306}{103}\)

\(\Leftrightarrow\frac{3}{4}\left(x-1\right)=\frac{204}{103}\)

\(\Leftrightarrow x-1=\frac{272}{103}\)

\(\Leftrightarrow x=\frac{375}{103}\)

24 tháng 8 2015

OLM xem đi em lm đúng ko

23 tháng 11 2016

\(A=\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)

\(A=\frac{1}{1.4}-\left(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\right)\)

Đặt \(B=\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\)

\(B=\frac{1}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2011.2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2011}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\frac{1005}{4028}=\frac{335}{4028}\)

\(A=\frac{1}{4}-\frac{335}{4028}=\frac{168}{1007}\)

23 tháng 11 2016

A = \(\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)

A = 1 + \(\frac{1}{4}\) - \(\frac{1}{4}\) + \(\frac{1}{7}\) - \(\frac{1}{7}\) + \(\frac{1}{10}\) -....- \(\frac{1}{2011}\) + \(\frac{1}{2014}\)

A = 1 + \(\frac{1}{2014}\) = \(\frac{2015}{2014}\)

 

6 tháng 10 2019

Sai đề : \(\frac{1}{2011.2014}\)

\(A=\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)

\(A=\frac{1}{1.4}-\left(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\right)\)

Đặt \(B=\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\)

\(B=\frac{1}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2011.2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2011}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\frac{1005}{4028}=\frac{335}{4028}\)

\(A=\frac{1}{4}-\frac{335}{4028}=\frac{168}{1007}\)

Chúc bạn học tốt !!!