K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>3x+30 độ=60 độ+k*360 hoặc 3x+30 độ=120 độ+k*360 độ

=>k=10 độ+k*120 độ hoặc x=30 độ+k*120 độ

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\sin x = \frac{{\sqrt 2 }}{2}\;\; \Leftrightarrow \sin x = \sin \frac{\pi }{4}\;\;\;\; \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = \pi  - \frac{\pi }{4} + k2\pi }\end{array}} \right.\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = \frac{{3\pi }}{4} + k2\pi }\end{array}\;\left( {k \in \mathbb{Z}} \right)} \right.\;\)

b)

\(\begin{array}{l}\sin 3x =  - \sin 5x\;\;\;\\\; \Leftrightarrow \,\,\,\sin 3x + \sin 5x = 0\;\;\;\;\;\;\\ \Leftrightarrow \,\,\,2\sin 4x\cos x = 0\;\end{array}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin 4x = 0}\\{\cos x = 0}\end{array}\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin 4x = \sin 0}\\{\cos x = \cos \frac{\pi }{2}}\end{array}} \right.\;\;\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{4x = k\pi }\\{x = \frac{\pi }{2} + k\pi }\end{array}\;\left( {k \in \mathbb{Z}} \right)} \right.} \right.\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

\(a)\;sinx = \frac{{\sqrt 3 }}{2}\)

Vì \(sin\frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\) nên \(sinx = \frac{{\sqrt 3 }}{2} \Leftrightarrow sin\frac{\pi }{3} = sin\frac{\pi }{3}\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \pi  - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)

Vậy phương trình có nghiệm là \(x = \frac{\pi }{3} + k2\pi \) hoặc \(x = \frac{{2\pi }}{3} + k2\pi \)\(,k \in \mathbb{Z}\).

\(\begin{array}{l}b)\;sin(x + {30^o}) = sin(x + {60^o})\\ \Leftrightarrow \left[ \begin{array}{l}x + {30^o} = x + {60^o} + k{360^o},k \in \mathbb{Z}\\x + {30^o} = {180^o} - x - {60^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow x = {45^o} + k{180^o},k \in \mathbb{Z}.\end{array}\)

Vậy phương trình có nghiệm là \(x = {45^o} + k{180^o},k \in \mathbb{Z}\).

NV
30 tháng 7 2021

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)+1=3sinx.cosx\)

Đặt \(sinx+cosx=t\Rightarrow\left|t\right|\le\sqrt{2}\)

\(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\dfrac{t^2-1}{2}\)

Phương trình trở thành:

\(t\left(1-\dfrac{t^2-1}{2}\right)+1=\dfrac{3}{2}\left(t^2-1\right)\)

\(\Leftrightarrow t^3+3t^2-3t-5=0\)

\(\Leftrightarrow\left(t+1\right)\left(t^2+2t-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=-1-\sqrt{6}\left(loại\right)\\t=-1+\sqrt{6}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=-\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\dfrac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

6 tháng 3 2018

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(2\cos x =  - \sqrt 2  \Leftrightarrow \cos x =  - \frac{{\sqrt 2 }}{2}\;\; \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = \pi  - \frac{\pi }{4} + k2\pi }\end{array}} \right.\;\;\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = \frac{{3\pi }}{4} + k2\pi }\end{array}\;\left( {k \in \mathbb{Z}} \right)} \right.\)

b) \(\cos 3x - \sin 5x = 0\;\;\;\; \Leftrightarrow \cos 3x = \sin 5x\;\;\;\; \Leftrightarrow \cos 3x = \cos \left( {\frac{\pi }{2} - 5x} \right)\;\;\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x = \frac{\pi }{2} - 5x + k2\pi }\\{3x =  - \frac{\pi }{2} + 5x + k2\pi }\end{array}} \right.\;\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{8x = \frac{\pi }{2} + k2\pi }\\{ - 2x =  - \frac{\pi }{2} + k2\pi }\end{array}} \right.\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{{16}} + \frac{{k\pi }}{4}}\\{x = \frac{\pi }{4} - k\pi }\end{array}} \right.\;\;\left( {k \in \mathbb{Z}} \right)\)

18 tháng 12 2017

NV
16 tháng 9 2021

a.

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos2x=\dfrac{1}{2}-\dfrac{1}{2}cos6x\)

\(\Leftrightarrow cos2x=cos6x\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=2x+k2\pi\\6x=-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=k2\pi\\8x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{k\pi}{4}\end{matrix}\right.\)

NV
16 tháng 9 2021

b.

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos2x+\dfrac{1}{2}-\dfrac{1}{2}cos4x+\dfrac{1}{2}-\dfrac{1}{2}cos6x=\dfrac{3}{2}\)

\(\Leftrightarrow cos2x+cos6x+cos4x=0\)

\(\Leftrightarrow2cos4x.cos2x+cos4x=0\)

\(\Leftrightarrow cos4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\\2x=\dfrac{2\pi}{3}+k2\pi\\2x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=\dfrac{\pi}{3}+k\pi\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

tham khảo:

x ∈ {2*pi*k, 2*pi*k-2*pi/3, 2*pi*k-pi/3, 2*pi*k+pi/3, 2*pi*k+2*pi/3, 2*pi*k+pi}, k ∈ Z

 
2 tháng 9 2021

(sinx + sin5x) + (sin2x + sin4x) + 4sin3x = 0

⇔ 2sin3x . cos2x + 2sin3x . cosx + 4sin3x = 0

⇔ 2sin3x (cos2x + cosx + 2sin3x) = 0

⇔ \(\left[{}\begin{matrix}sin3x=0\left(1\right)\\cos2x+cosx+2sin3x=0\left(2\right)\end{matrix}\right.\)

(1) ⇔ ...

(2) ⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}+4sin\dfrac{3x}{2}.cos\dfrac{3x}{2}=0\)

⇔ \(\left[{}\begin{matrix}cos\dfrac{3x}{2}=0\left(\alpha\right)\\cos\dfrac{x}{2}+2sin\dfrac{3x}{2}=0\left(\beta\right)\end{matrix}\right.\)

Giải \(\left(\alpha\right)\) quá đơn giản

Giải \(\left(\beta\right)\) 

\(2\left(3sin\dfrac{x}{2}-4sin^3\dfrac{x}{x}\right)+cos\dfrac{x}{2}=0\)

⇔ \(-8sin^3\dfrac{x}{2}+6sin\dfrac{x}{2}\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)+cos\dfrac{x}{2}.\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)=0\)

⇔ \(-2sin^3\dfrac{x}{2}+6sin\dfrac{x}{2}.cos^2\dfrac{x}{2}+sin^2\dfrac{x}{2}.cos\dfrac{x}{2}+cos^3\dfrac{x}{2}=0\) 

Xét \(x=k2\pi,k\in Z\) tức \(sin\dfrac{x}{2}=0\) có thỏa mãn phương trình không, nếu có kết luận về nghiệm 

Dù trường hợp trên có thỏa mãn hay không thì tiếp tục xét trường hợp nữa là \(x\ne k2\pi,k\in Z\) tức \(sin\dfrac{x}{2}\ne0\). Rồi chia cả 2 vế phương trình lằng nhằng kia cho \(sin\dfrac{x}{2}\) và đưa về phương trình bậc 3 theo cot\(\dfrac{x}{2}\)