Tìm nghiệm của đa thức:
a) \(\left(x-2\right)\left(x+2\right)\)
b) \(\left(x-1\right)\left(x^2+1\right)\)
HELP ME!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt f(x)=0
\(\Leftrightarrow x-2x^2+2x^2-x+4=0\)
=>4=0(loại)
b: Đặt g(x)=0
\(\Leftrightarrow x^2-5x-x^2-2x+7x=0\)
=>0x=0(luôn đúng)
c: Đặt H(x)=0
\(\Leftrightarrow x^2-x+1=0\)
Δ=1-4=-3<0
DO đó: PTVN
a) \(\left(3x-5\right)\left(3x+5\right)\)
\(=\left(3x\right)^2-5^2\)
\(=9x^2-25\)
b) \(\left(x-2y\right)\left(x+2y\right)\)
\(=x^2-\left(2y\right)^2\)
\(=x^2-4y^2\)
c) \(\left(-x-\dfrac{1}{2}y\right)\left(-x+\dfrac{1}{2}y\right)\)
\(=\left(-x\right)^2-\left(\dfrac{1}{2}y\right)^2\)
\(=x^2-\dfrac{1}{4}y^2\)
`a, (3x-5)(3x+5) = 9x^2 - 25`
`b, (x-2y)(x+2y) = x^2 -4y^2`
`c, (-x-1/2y)(-x+1/2y) = x^2 - 1/4y^2`
Bài 3 :
1. Thay x = -5 vào f(x) ta được :
\(\left(-5\right)^2-4\left(-5\right)+5=50\)
Vậy x = -5 không là nghiệm của đa thức trên .
Bài 2 :
1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)
=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)
=> \(f_{\left(x\right)}=x^2+4\)
=> \(x^2+4=0\)
Vậy đa thức trên vô nghiệm .
2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)
=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)
=> \(g_{\left(x\right)}=0\)
Vậy đa thức trên vô số nghiệm .
3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)
=> \(h_{\left(x\right)}=x^2-x+1\)
=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
Vậy đa thức vô nghiệm .
Bài 3:
\(f\left(x\right)=x^2+4x-5.\)
+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)
\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)
\(\Rightarrow f\left(x\right)=25-20-5\)
\(\Rightarrow f\left(x\right)=5-5\)
\(\Rightarrow f\left(x\right)=0.\)
Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)
Chúc bạn học tốt!
Bài 1 : k bt làm
Bài 2 :
Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x
+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)
\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)
\(\Leftrightarrow0=7.P\left(2\right)\)
\(\Leftrightarrow P\left(2\right)=0\)
\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)
+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)
\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)
\(\Leftrightarrow P\left(-1\right)=0\)
\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm
nghiệm của đa thức xác định đa thức đó bằng 0
0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-
a, Để (x - 2) (x + 2) có nghiệm thì (x - 2) (x + 2) = 0
<=> \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy x = 2; x = -2 là nghiệm của đa thức (x - 2) (x + 2)
b,Để (x - 1) (x2 + 1) có nghiệm thì (x - 1) (x2 + 1) = 0
<=>\(\left[{}\begin{matrix}x-1=0< =>x=1\\x^2+1>0\forall x\end{matrix}\right.\)
Vậy x = 1 là nghiệm của đa thức (x - 1) (x2 + 1)
a) x là nghiệm của đa thức (x-2).(x+2)
<=>(x-2).(x+2)=0
<=>\(\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Vậy nghiệm của đa thức (x-2).(x+2) là \(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
b) x là nghiệm của đa thức (x-1).(x2+1)
<=>(x-1).(x2+1)=0
<=>\(\left[{}\begin{matrix}x-1=0\\x^2+1=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=1\\x^2=-1\end{matrix}\right.\)
vì x2=-1 vô lí
<=>x=1
Vậy nghiệm của đa thức (x-1).(x2+1) là x=1
\(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\)\(\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\)\(\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\)\(\left(3x-2\right)\left(3x-6\right)\)
\(=\)\(3\left(x-2\right)\left(3x-2\right)\)
Chúc bạn học tốt ~
a) \(\left(x-5\right)\left(a^2+5a+25\right)\)
\(=a^3-5^3\)
\(=a^3-125\)
b) \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(=x^3+\left(2y\right)^3\)
\(=x^3+8y^3\)
a: (2x-3/2)(|x|-5)=0
=>2x-3/2=0 hoặc |x|-5=0
=>x=3/4 hoặc |x|=5
=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)
b: x-8x^4=0
=>x(1-8x^3)=0
=>x=0 hoặc 1-8x^3=0
=>x=1/2 hoặc x=0
c: x^2-(4x+x^2)-5=0
=>x^2-4x-x^2-5=0
=>-4x-5=0
=>x=-5/4
1234567890
9876543210
k tui và kb nhé
tạm biệt các bạn
a) x = 2 hoặc x = -2
b) x 1 hoặc x = -1
- Ủng hộ -