Tìm x
22x + 4x + 2 = 272
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D=5x2+5x-27x+27/(x)22(x)(2) +22
D=5x(x+1)-27(x+1)/(x-2)2
D=(5x-27)(x+1)/(x-20(x-2)
bai cua ban Hakawa Genzo sai roi -27x+27 e thanh -27(x-1) ma
\(1,\Rightarrow3^{x-3}=\left(3^2\right)^8:\left(3^3\right)^5=3^{16}:3^{15}=3^1\\ \Rightarrow x-3=1\\ \Rightarrow x=4\\ 2,\Rightarrow7^x\left(1+7^2\right)=350\\ \Rightarrow7^x=\dfrac{350}{50}=7=7^1\\ \Rightarrow x=1\)
\(3,\Rightarrow2^{2+2x+2}-2^{2x}=240\\ \Rightarrow2^{2x}\left(2^4-1\right)=240\\ \Rightarrow2^{2x}=\dfrac{240}{15}=16=2^4\\ \Rightarrow2x=4\Rightarrow x=2\)
Cách 1. Lập bảng xét dấu.
Cách 2. f(x) không xác định khi x = 2 và 2 ∈ ((-3)/2; +∞) nên A sai. Dễ thấy x = (-7)/4 thì x 2 – 4 < 0; x – 2 < 0; 2x + 3 < 0 ⇒ f(x) < 0, vì vậy C và D sai.
Đáp án: B
Lời giải:
Ta có:
\(C=\frac{5(x^2-4x+4)-2x+5}{x^2-4x+4}=\frac{5(x-2)^2-2(x-2)+1}{(x-2)^2}=5-\frac{2}{x-2}+\frac{1}{(x-2)^2}\)
Đặt $\frac{1}{x-2}=t$ thì:
$C=t^2-2t+5=(t-1)^2+4\geq 4$ với mọi $t$
$\Rightarrow C_{\min}=4$. Vậy GTNN của $C$ là $4$. Giá trị này đạt tại $t=1$
$\Leftrightarrow \frac{1}{x-2}=1\Leftrightarrow x=3$
d) \(4x^4-x^2=x^2\left(4x^2-1\right)=x^2\left(2x-1\right)\left(2x+1\right)\)
e) Ta có: \(6x^2-7x-5\)
\(=6x^2-10x+3x-5\)
\(=2x\left(3x-5\right)+\left(3x-5\right)\)
\(=\left(3x-5\right)\left(2x+1\right)\)
f: Ta có: \(-4x^2+23x-15\)
\(=-4x^2+20x+3x-15\)
\(=-4x\left(x-5\right)+3\left(x-5\right)\)
\(=\left(x-5\right)\left(-4x+3\right)\)
\(2^{2x}+4^{x+2}=272\)
\(\Rightarrow4^x+4^x\cdot4^2=272\)
\(\Rightarrow4^x\left(1+4^2\right)=272\)
\(\Rightarrow4^x\cdot17=272\)
\(\Rightarrow4^x=16\)
\(4^x=4^2\)
\(\Rightarrow x=2\)
thiếu dấu \(\Rightarrow\) rồi bạn