K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

Ta có:

\(-\frac{6}{9}=\frac{x}{15}=\frac{14}{y}\)

Từ \(\frac{x}{15}=-\frac{6}{9}\Rightarrow9x=-90\Rightarrow x=-10\)

Từ \(-\frac{10}{15}=\frac{14}{y}\Rightarrow-10y=210\Rightarrow y=-21\)

\(x=-10,y=-21\Rightarrow x^3+y^3=\left(-10\right)^3+\left(-21\right)^3=-10261\)

2:

-8x^6-12x^4y-6x^2y^2-y^3

=-(8x^6+12x^4y+6x^2y^2+y^3)

=-(2x^2+y)^3

3:

=(1/3)^2-(2x-y)^2

=(1/3-2x+y)(1/3+2x-y)

Cảm ơn bạn nhiều! Bạn có thể làm bài 1 không

 

28 tháng 2 2017

Bạn tính x ra sau đó từ tỉ lệ thức ta tính ra đc y và z.

28 tháng 2 2017

Mình gợi ý nha:

Bạn tính x từ phép tính 3.x3+7=199   (bằng 4)

Rồi bạn tính (x+10)/7   (bằng 2)

Từ đó ta có y+6=18 và 27-z=22

Tính y;z

Tính x+y+z.

26 tháng 7 2015

có khùng hk vậy hùng tự đăng tự giải ls

 

30 tháng 6 2015

1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51 
Vậy 2 số tận cùng của 51^51 là 51 
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3 
Vậy trung bìng cộng là 2 
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6 
Do x là số nguyên tố => x=7 TM 
5)3y=2z=> 2z-3y=0 
4x-3y+2z=36=> 4x=36=> x=9 
=> y=2.9=18=> z=3.18/2=27 
=> x+y+z=9+18+27=54 
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5 
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7) 
Nhân ra kết quả cuối cùng là x=3 
8)ta có (3x-2)^5=-243=-3^5 
=> 3x-2=-3 => x=-1/3 
9)Câu này chưa rõ ý bạn muốn hỏi! 
10)2x-3=4 hoặc 2x-3=-4 
<=> x=7/2 hoặc x=-1/2 
11)x^4=0 hoặc x^2=9 
=> x=0 hoặc x=-3 hoặc x=3 

14 tháng 2 2017

Cho đáp án:

1/ x = -1

2/ x = -10; y = -6

3/ 9 phần tử

4/ = 6

5/ Không chắc

Nhớ kiểm tra lại hộ

14 tháng 2 2017

Bạn có thể giải giúp mình ko mình đang cần gấp

23 tháng 2 2017

x+y+z=45

23 tháng 2 2017

k cho mình đi

21 tháng 7 2018

bài của   Never_NNL   sai nhé:

  \(x+y=m+n\)   \(\Rightarrow\)\(n=x+y-m\)

Ta có:    \(A=x^2+y^2+m^2+n^2\)

\(=x^2+y^2+m^2+\left(x+y-m\right)^2\)

\(=2x^2+2y^2+2m^2+2xy-2mx-2my\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2mx+m^2\right)+\left(y^2-2my+m^2\right)\)

\(=\left(x+y\right)^2+\left(x-m\right)^2+\left(y-m\right)^2\)

Vậy A là tổng của 3 số chính phương

21 tháng 7 2018

x + y = m + n

m = x + y - n

x^2 + y^2 + ( x + y - n )^2 + n^2 

= x^2 + y^2 + ( x^2 + xy- xn ) + ( xy + y^2 - ny ) - [ ( - xn ) + ( - ny ) + n^2 ] + n^2 

= x^2 + y^2 + x^2 + xy - xn + xy + y^2 - ny + xn + ny - n^2 + n^2 

= 2x^2 + 2y^2 + 2xy 

= x^2 + y^2 + ( x^2 + y^2 + 2xy )

= x^2 + y^2 + ( x + y )^2 ( dpcm )

17 tháng 6 2018

Ta có \(y< z\)

=> \(x+y< x+z\)(1)

và \(x< y\)

=> \(x+z< y+z\)(2)

Từ (1) và (2) => \(x+y< x+z< y+z\)

Theo đề bài, ta có:\(\frac{x+y}{9}=\frac{x+z}{12}=\frac{y+z}{13}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x+y}{9}=\frac{x+z}{12}=\frac{y+z}{13}=\frac{2\left(x+y+z\right)}{9+12+13}=\frac{2.51}{34}=\frac{102}{34}=3\)(*)

=> \(x+y=27\)

và \(x+y=51-z\)

=> \(51-z=27\)

=> \(z=24\)

(*) => \(x+z=36\)

và \(x+z=51-y\)

=> \(51-y=36\)

=> \(y=15\)

Ta lại có: \(x=51-\left(y+z\right)\)

=> \(x=51-\left(15+24\right)\)

=> \(x=51-39=12\)