cho he phuong trinh\(\hept{\begin{cases}mx-t=2m\\x-my=1+m\end{cases}}\)
a.giai hpt khi m=-2
b.tim m de hpt co nghiem duy nhat.tim nghiem duy nhat do.
c.chung to M(x,y) luon thuoc 1 duong thang co dinh voi (x,y)la nghiem tim dc o cau b.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Để hệ phương trình có hệ duy nhất khi : \(\frac{1}{m}\ne\frac{m}{1}\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
Vơí \(m\ne\pm1\)
\(\hept{\begin{cases}x+my=m+1\\mx+y=2m\end{cases}\Leftrightarrow\hept{\begin{cases}mx+m^2y=m^2+m\\mx+y=2m\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m^2-1\right)y=m^2-m\\mx+y=2m\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)\left(m+1\right)y=m\left(m-1\right)\\mx+y=2m\end{cases}}}\)
\(\left(1\right)\Rightarrow\left(m-1\right)\left(my+y-m\right)=0\Leftrightarrow y=\frac{m}{m+1}\)
Thay vào (2) ta được : \(mx+\frac{m}{m+1}=2m\Leftrightarrow mx\left(m+1\right)+m=2m\left(m+1\right)\)
\(\Leftrightarrow m^2x+mx+m=2m^2+2m\Leftrightarrow x\left(m^2+m\right)=2m^2+m\)
\(\Leftrightarrow x=\frac{2m^2+m}{m^2+m}=\frac{2m+1}{m+1}\)
Vậy hệ phương trình có nghiệm duy nhất là ( x ; y ) = \(\left(\frac{2m+1}{m+1};\frac{m}{m+1}\right)\)
Thay vào biểu thức trên ta được : \(x+5y=4\Rightarrow\frac{2m+1}{m+1}+\frac{5m}{m+1}=4\)ĐK : \(m\ne-1\)
\(\Rightarrow7m+1=4m+4\Leftrightarrow3m-3=0\Leftrightarrow m=1\)( tmđk )
a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)
=> HPT vô nghiệm
b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )
HPT vô nghiệm
<=> ( * ) vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)
<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2
<=> m = -1