2 phần 5 nhân x= 3 phần 5 + 1 phần 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3}-\frac{1}{3}.\frac{x-3}{2}-\frac{1}{2}.2.x+1=5\)
\(\Leftrightarrow\frac{2}{3}-\frac{x-3}{3.2}-\frac{2.x}{2}+1=5\)
\(\Leftrightarrow\frac{2}{3}-\frac{x-3}{6}-x+1=5\)
\(\Leftrightarrow\frac{2}{3}-\frac{x-3}{6}-x=4\)
\(\Leftrightarrow\frac{4}{6}-\frac{x-3}{6}-\frac{6x}{6}=4\)
\(\Leftrightarrow\frac{4-\left(x-3\right)-6x}{6}=4\)
\(\Leftrightarrow\frac{4-x+3+6x}{6}=4\)
\(\Leftrightarrow\frac{4+3-x+6x}{6}=\frac{4}{1}\)
\(\Leftrightarrow\frac{7+5x}{6}=\frac{4}{1}\)
\(\Leftrightarrow7+5x=4.6\)
\(\Leftrightarrow7+5x=24\)
\(\Leftrightarrow5x=24-7\)
\(\Leftrightarrow5x=17\)
\(\Leftrightarrow x=\frac{17}{5}\)
Vậy \(x=\frac{17}{5}\)
Chúc bạn học tốt
(\(x\) + \(\dfrac{1}{2}\))2 = \(\dfrac{1}{16}\)
\(\left[{}\begin{matrix}x+\dfrac{1}{2}=-\dfrac{1}{4}\\x+\dfrac{1}{2}=\dfrac{1}{4}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{1}{4}-\dfrac{1}{2}\\x=\dfrac{1}{4}-\dfrac{1}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {- \(\dfrac{3}{4};-\dfrac{1}{4}\)}
\(x\) : (- \(\dfrac{1}{3}\))3 = - \(\dfrac{1}{3}\)
\(x\) = (-\(\dfrac{1}{3}\)).(-\(\dfrac{1}{3}\))3
\(x\) = \(\dfrac{1}{81}\)
Vậy \(x=\dfrac{1}{81}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{11}{75}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{11}{75}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{x+2}=\frac{11}{75}:\frac{1}{2}=\frac{22}{75}\Leftrightarrow\frac{1}{x+2}=\frac{1}{25}\Leftrightarrow x=23\)
\(\dfrac{2}{5}\times x=\dfrac{3}{5}+\dfrac{1}{2}\)
\(\dfrac{2}{5}\times x=\dfrac{6}{10}+\dfrac{5}{10}\)
\(\dfrac{2}{5}\times x=\dfrac{11}{10}\)
\(x=\dfrac{11}{10}:\dfrac{2}{5}\)
\(x=\dfrac{11}{10}:\dfrac{5}{2}\)
\(x=\dfrac{11}{4}\)
#DatNe
\(\dfrac{2}{5}\times x=\dfrac{3}{5}+\dfrac{1}{2}\)
\(\dfrac{2}{5}\times x=\dfrac{11}{10}\)
\(x=\dfrac{11}{10}:\dfrac{2}{5}\)
\(x=\dfrac{11}{4}\)