tìm x, biết:
(4x + 1)(-x - 9) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b:
1: \(\Leftrightarrow2x\left(x+2\right)=0\)
=>x=0 hoặc x=-2
a) \(4x^2-1-x\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-x\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1-x\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
b) \(\left(4x-1\right)^2-9=0\)
\(\Leftrightarrow\left(4x-1-3\right)\left(4x-1+3\right)=0\)
\(\Leftrightarrow\left(4x-4\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-4=0\\4x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)
\(\)
b) ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0
<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0
<=> ( 2x - 3 )( 1 + x - 1 ) = 0
<=> x( 2x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
Vậy .....
a, 25x^2 - 1 - (5x -1)(x+2)=0
=> (5x)^2 - 1 + (5x-1)(x+2) = 0
=> (5x-1)(5x+1) + (5x-1)(x+2) = 0
=> (5x-1)(5x+1+x+2) = 0
=> (5x-1)(6x+3) = 0
=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)
`a,x^2+2x+1=9`
`<=>x^2+2.x.1+1^2=9`
`<=>(x+1)^2=3^2`
`<=>(x+1)^2=+-3`
\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
`b, x^2-4x-21=0`
`<=>x^2+3x-7x-21=0`
`<=>x(x+3) - 7(x+3)=0`
`<=>(x+3)(x-7)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
`c,x^2+10x-24=0`
`<=>x^2+12x-2x-24=0`
`<=>x(x+12)-2(x+12)=0`
`<=>(x+12)(x-2)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+12=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-12\\x=2\end{matrix}\right.\)
a: =>(x+1)^2=9
=>(x+1+3)(x+1-3)=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
b: =>x^2-7x+3x-21=0
=>(x-7)(x+3)=0
=>x=7;x=-3
c: =>x^2+12x-2x-24=0
=>(x+12)(x-2)=0
=>x=2 hoặc x=-12
a,x.(x+7)=0
suy ra x=o hoặc x+7=0
vs x+7=0
x=0+7
x=7
vậy x=0 hoặc x=7
b(2+2x)(7-x)=0
suy ra 2+2x=0 hoặc 7-x=0
vs2+2x=0 vs7-x=0
2x =0-2 x=0+7
2x =(-2) x=7
x=(-2);2
x=-1
vậy x=-1 hoặc x=7
d(x^2-9)(3x+15)=0
suy ra x^2-9=0 hoặc 3x+15=0
vsx^2-9=0 vs 3x+15=0
x^2 =0+9 3x =0-15
x^2 =9 3x =-15
x^2 =3^2 x=(-15):3
suy ra x=3 hoặc x=-3 x=-5
vậy x=3 x=-3 hoặc x=-5
e,(4x-8)(x^2+1)=0
suy ra4x-8=0 hoặc x^2+1=0
vs 4x-8=0 vs x^2+1=0
4x =0+8 x^2 =0-1
4x =8 x^2 =-1
x =8:4 x^2 =-1^2 hoặc 1^2
x =2 suy ra x=-1 hoặc x=1
vậy x=2, x=-1 hoặc x=1
\(\frac{1}{4x^2}-9=0\)
\(\Leftrightarrow\left(\frac{1}{2x}+3\right)\left(\frac{1}{2x}-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2x}+3=0\\\frac{1}{2x}-3=0\end{cases}\Rightarrow\orbr{\begin{cases}\frac{1}{2x}=-3\\\frac{1}{2x}=3\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}2x=\frac{-1}{3}\\2x=\frac{1}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{1}{6}\end{cases}}}\)
Vậy\(x=\frac{-1}{6};\frac{1}{6}\)
1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)
2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)
3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)
4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)
\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)
5, em xem lại đề nhé
à lag tý @@
5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)
`(4x+1)(-x-9)=0`
\(< =>\left[{}\begin{matrix}4x+1=0\\-x-9=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}4x=-1\\-x=9\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-9\end{matrix}\right.\)
`(4x+1)(-x-9)=0`
TH1: `4x+1=0`
`=>4x=-1`
`=>x=-1/4`
TH2: `-x-9=0`
`=>-x=9`
`=>x=-9`
Vậy `x\in{-1/4;-9}`