so sanh: 2^3 va 3^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)
Mà \(3^{4000}=3^{4000}\)
\(\Rightarrow3^{4000}=9^{2000}\)
Vậy \(3^{4000}=9^{2000}\)
b, Ta có : \(2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\)
\(\Rightarrow2^{333} < 3^{222}\)
\(\Rightarrow2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
a) \(3^{4000}\) và \(9^{2000}\)
ta có:\(9^{2000}=\left(3^2\right)^{2000}=9^{2000}\)
=>\(9^{2000}=9^{2000}\Leftrightarrow3^{4000}=9^{2000}\)
b)\(2^{332}\) và \(3^{223}\)
\(2^{332}\) <\(2^{333}\) mà \(2^{333}=\left(2^3\right)^{111}=8^{111}\)(1)
\(3^{223}\) >\(3^{222}\) mà \(3^{222}=\left(3^2\right)^{111}=9^{111}\)(2)
từ (1 và 2),suy ra:8111<9111 hay 2332<3223
\(\frac{2}{3}^{50}=\frac{2}{3}^{45}x\frac{2}{3}^5\)
\(\frac{2}{3}^5=\frac{2}{3}.\frac{2}{3}.\frac{2}{3}.\frac{2}{3}.\frac{2}{3}=\frac{32}{243}\)
Đến đây bạn tự làm nhé
nhân cả 2 số cho 5=>-3 và -10/3.
nhân cả 2 số cho 3=>-9 và -10
mà -9<-10
vậy -2/5<2/-3
chị học lớp 9 rồi nên không nhớ lắm về lớp 6 . ko bk cách này dc ko nữa.
\(\frac{-3}{5}vs\frac{2}{-3}\)
\(\frac{-3}{5}=\frac{-9}{15}\)\(;\)\(\frac{2}{-3}=\frac{-10}{15}\)
\(\frac{-9}{15}>\frac{-10}{15}\)\(=>\frac{-3}{5}>\frac{2}{-3}\)
Giải thông thường nhé bạn:
Ta có: 2*81^3=1062882
3*64^3=786432
=> 2*81^3>3*64^3
2^3=(2^3)^1
=8^1
3^2=(3^2)^1
=9^1
Vi 8^1<9^1 nen 2^3<3^2
2^3 = 8
3^2 = 9
Nên 2^3 < 3^2