a+b=3
c+b=4
a+c=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Biểu thức cần tính bằng:
\(2a-b-c+a-b+a-c+c-b\)
\(=4a-3b-c\)
-Chọn D.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Ta có \(\frac{3a-2b}{4}=\frac{2c-4a}{3}=\frac{4b-3c}{2}\)
=> \(\frac{12a-8b}{16}=\frac{6c-12a}{9}=\frac{8b-6c}{4}=\frac{12a-8b+6c-12a+8b-6c}{16+9+4}=\frac{0}{29}=0\)
=> \(\hept{\begin{cases}12a-8b=0\\6c-12a=0\\8b-6c=0\end{cases}}\Rightarrow\hept{\begin{cases}12a=8b\\6c=12a\\8b=6c\end{cases}}\Rightarrow\hept{\begin{cases}3a=2b\\2c=4a\\4b=3c\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{a}{2}=\frac{c}{4}\\\frac{c}{4}=\frac{b}{3}\end{cases}}\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
=> \(\frac{\left|a\right|}{\left|2\right|}=\frac{\left|b\right|}{\left|3\right|}=\frac{\left|c\right|}{\left|4\right|}=\frac{\left|a\right|-\left|b\right|-\left|c\right|}{\left|2\right|-\left|3\right|-\left|4\right|}=\frac{-10}{2-3-4}=\frac{-10}{-5}=2\)
=> \(\hept{\begin{cases}a=\pm4\\b=\pm6\\c=\pm8\end{cases}}\)Vì mẫu số cùng dấu => Tử số cùng dấu
=> Các cặp (a;b;c) tìm được là (4;6;8) ; (-4;-6;-8)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{4a+3c}{4b+3d}=\dfrac{4bk+3dk}{4b+3d}=k\)
\(\dfrac{4a-3c}{4b-3d}=\dfrac{4bk-3dk}{4b-3d}=k\)
Do đó: \(\dfrac{4a+3c}{4b+3d}=\dfrac{4a-3c}{4b-3d}\)
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó (2a + 3c)(2b - 3d)
= (2bk + 3dk)(2b - 3d)
= k(2b + 3d)(2b - 3d) (1)
(2a - 3c)(2b + 3d)
= (2bk - 2dk)(2b + 3d)
= k(2b - 3d)(2b + 3d) (2)
Từ (1)(2) => (2a + 3c)(2b - 3d) = (2a - 3c)(2b + 3d)
b) Sửa đề (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có (4a + 3b)(4c - 3d) = (4bk + 3b)(4dk - 3d) = bd(4k + 3)(4k - 3) (1)
Lại có (4a - 3b)(4c + 3d) = (4bk - 3b)(3dk + 3d) = bd(4k- 3)(4k + 3) (2)
Từ (1)(2) => (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d)
1, Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)
\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2a-3c\right).\left(2b+3d\right)\)
Vậy (2a + 3c).(2b - 3d) = (2a - 3c).(2b + 3d)
Câu 2 cũng tương tự nên tự làm đi
a=1;b=2;c=2
1 + 2 = 3
2 + 2 = 4
1 + 2 = 3