K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

m×nh hocp 4 th× m×nh chÞu

15 tháng 2 2018

a, Ta có góc BAC=BAH ( vì cùng phụ với góc ABH )

b, => Cần chứng minh \(AB^2-BH^2=AC^2-CH^2\) (1)

Theo định lý Py-ta-go : 

Trong tam giác vuông AHB có : \(AB^2-BH^2=AH^2\)


Trong tam giác vuông AHC có : \(AC^2-HC^2=AH^2\)

=> VT= VP => (1) đúng đpcm

15 tháng 2 2018

a) Góc bằng \(\widehat{C}\) là \(\widehat{BAH}\)

b) Xét 

19 tháng 2 2020

Hình bạn tự vẽ nhé

a) Áp dụng định lý Pytago vào \(\Delta AHB\)vuông tại H ta được:

\(AB^2=BH^2+AH^2\Rightarrow AH^2=AB^2-BH^2\)(1)

Áp dụng định lý Pytago vào \(\Delta HAC\)vuông tại H ta được:

\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\)(2)

Từ (1) và (2) \(\Rightarrow AC^2-CH^2=AB^2-BH^2\)

\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\)(ĐCCM)

b) Áp dụng định lý Pytago vào\(\Delta ABC\) vuông tại A ta được:

\(BC^2=AC^2+AB^2\)\(=\left(AH^2+CH^2\right)+\left(AH^2+BH^2\right)=2AH^2+CH^2+BH^2\)(ĐCCM)

a) Xét ΔACH vuông tại H và ΔBCA vuông tại A có

\(\widehat{C}\) chung

Do đó: ΔACH\(\sim\)ΔBCA(g-g)

\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{CH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AC^2=CH\cdot CB\)(đpcm)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Thay AC=8cm và BC=10cm vào biểu thức \(AC^2=CH\cdot BC\), ta được:

\(CH\cdot10=8^2=64\)

hay CH=6,4(cm)

Ta có: CH+BH=BC(H nằm giữa B và C)

nên BH=BC-CH=10-6,4=3,6(cm)

Vậy: BH=3,6cm; CH=6,4cm

c) Xét ΔABH vuông tại H và ΔCAH vuông tại H có

\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

\(\Leftrightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=BH\cdot CH\)(đpcm)

9 tháng 2 2016

theo định lí py-ta-go ta có :

                          BC2=AC2+AB2

\(\Rightarrow\)BC2=82+62  \(\Rightarrow\)BC=\(\sqrt{8^2}+6^2\)=50