Tìm ba số tự nhiên a, b, c sao cho
\(\dfrac{1}{a}+\dfrac{1}{a+b}+\dfrac{1}{a+b+c}=1\) 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các số trong phương trình là 1, vì vậy ta có: 3a + 2b + c = 1.
Với số tự nhiên a, b và c, ta có thể thử các giá trị để tìm bộ ba số thỏa mãn phương trình.
Ví dụ, ta có thể thử a = 1, b = 1 và c = -4, thì 3a + 2b + c = 3 + 2 + (-4) = 1, phương trình được thỏa mãn.
Vậy, một bộ ba số tự nhiên khác 0 thỏa mãn phương trình đã cho là a = 1, b = 1 và c = -4.
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)
BĐT trở thành:
\(\dfrac{y^2}{xz}+\dfrac{z^2}{xy}+\dfrac{x^2}{yz}\ge\dfrac{3}{2}\left(\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}-1\right)\)
\(\Leftrightarrow2\left(x^3+y^3+z^3\right)+3xyz\ge3x^2y+3y^2z+3z^2x\)
Áp dụng BĐT Schur ta có:
\(x^3+y^3+z^3+3xyz\ge x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\)
\(\Rightarrow VT\ge\left(x^3+xy^2\right)+\left(y^3+yz^2\right)+\left(z^3+zx^2\right)+x^2y+y^2z+z^2x\ge3\left(x^2y+y^2z+z^2x\right)\)
\(\Leftrightarrow c-a=\dfrac{b}{a}-\dfrac{1}{b}=\dfrac{b^2-a}{ab}\)
\(\Rightarrow b^2-a=ab\left(c-a\right)\Rightarrow b^2=a\left[b\left(c-a\right)+1\right]\)
\(\Rightarrow b^2⋮b\left(c-a\right)+1\) (1)
Nếu \(b\left(c-a\right)+1\ne1\) , do b và \(b\left(c-a\right)+1\) nguyên tố cùng nhau
\(\Rightarrow b⋮̸b\left(c-a\right)+1\Rightarrow b^2⋮̸b\left(c-a\right)+1\) trái với (1)
\(\Rightarrow b\left(c-a\right)+1=1\Rightarrow c=a\)
\(\Rightarrow b^2=a\Rightarrow ab=b^3\) là lập phương 1 số tự nhiên
Sửa \(\le\) thành \(\ge\) nha bạn
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
Ta có \(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Tương tự: \(\left\{{}\begin{matrix}\dfrac{b^2}{b+ca}=\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}\\\dfrac{c^2}{c+ba}=\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\end{matrix}\right.\)
Áp dụng BĐT cosi:
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3}{4}a\)
\(\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3}{4}b\)
\(\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{c^3}{64}}=\dfrac{3}{4}c\)
Cộng VTV:
\(\Leftrightarrow VT+\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\\ \Leftrightarrow VT\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{2\left(a+b+c\right)}{8}\\ \Leftrightarrow VT\ge\dfrac{a+b+c}{4}\)
Dấu \("="\Leftrightarrow a=b=c=3\)
Lời giải:
\(\frac{1719}{3976}=\frac{1}{2+\frac{538}{1719}}=\frac{1}{2+\frac{1}{3+\frac{105}{538}}}=\frac{1}{2+\frac{1}{3+\frac{1}{5+\frac{13}{105}}}}=\frac{1}{2+\frac{1}{3+\frac{1}{5+\frac{1}{8+\frac{1}{13}}}}}\)
$\Rightarrow a=8; b=13$
\(\dfrac{1719}{3976}=\dfrac{1}{\dfrac{3976}{1719}}=\dfrac{1}{2+\dfrac{538}{1719}}=\dfrac{1}{2+\dfrac{1}{\dfrac{1719}{538}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{105}{538}}}\)
\(=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{\dfrac{538}{105}}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{13}{105}}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{\dfrac{105}{13}}}}}\)
\(=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{8+\dfrac{1}{13}}}}}\)