Tính A biết \(A=\frac{1000}{1}+\frac{999}{2}+\frac{998}{3}+...+\frac{2}{999}+\frac{1}{1000}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/1*2+1/2*3+...+1/999*1000
=1/1-1/2+1/2-1/3+...+1/999-1/1000
=1-1/1000
So sánh A và B biết;
A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{999}{1000}\)
B = \(\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{998}{999}\)
= (999/1000+1/1000)+(998/1000+2/1000)+.......+(501/1000+499/1000)+500/1000
= 1+1+.....+1+1/2 ( có 499 số 1 )
= 499 + 1/2
= 999/2
\(\frac{999}{1000}+\frac{998}{1000}+\frac{997}{1000}+...+\frac{1}{1000}\)
\(=\frac{999+998+997+...+1}{1000}\)
Tử của Phân số trên có số số hạng là:
(999-1):1+1=999 (phấn số)
Tổng của tử phân số là:
(999+1)x999:2=499500
Như vậy phân số trên có giá trị: \(\frac{499500}{1000}=499,5\)
Vậy tổng trên có giá trị là 499,55
Các bạn ủng hộ mik nha
\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+\frac{2016}{998}+...+\frac{2016}{501}}{-\frac{1}{1\cdot2}-\frac{1}{3\cdot4}-\frac{1}{5\cdot6}-...-\frac{1}{999\cdot1000}}\)
\(B=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+\frac{1}{998}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{999\cdot1000}\right)}\)
\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)
\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left[\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)
\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)
\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1000}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{500}\right)}\)
\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}\)
\(B=\frac{2016}{-1}=-2016\)
bấm máy tính ra luôn