Tìm tích
A =\(\frac{3}{4}\).\(\frac{8}{9}\).\(\frac{15}{16}\)... \(\frac{960}{961}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.........\frac{899}{900}\)
A=\(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}..........\frac{29.31}{30.30}\)
A=\(\frac{1.2.3.......29}{2.3.4.......30}.\frac{3.4.5........31}{2.3.4.......30}\)
A=\(\frac{1}{30}.\frac{2}{31}=\frac{1}{465}\)
C = \(\dfrac{\dfrac{1}{9}-\dfrac{5}{6}-4}{\dfrac{7}{12}-\dfrac{1}{36}-10}\)
C = \(\dfrac{\dfrac{6-45-216}{54}}{\dfrac{21-1-360}{36}}\)
C = \(\dfrac{\dfrac{-85}{18}}{-\dfrac{85}{9}}\)
C = \(\dfrac{1}{2}\)
\(\frac{5-\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}{8-\frac{8}{3}+\frac{8}{9}-\frac{8}{27}}:\frac{15-\frac{15}{11}+\frac{15}{121}}{16-\frac{16}{11}+\frac{16}{121}}\)
\(=\frac{5\left(1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}\right)}{8\left(1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}\right)}:\frac{15\left(1-\frac{1}{11}+\frac{1}{121}\right)}{16\left(1-\frac{1}{11}+\frac{1}{121}\right)}\)
\(=\frac{5}{8}:\frac{15}{16}\)
\(=\frac{2}{3}\)
Bài này bạn tính thôi
Trình bày ra
Rồi làm thôi
Áp dụng công thức tính phân số ở Tiểu học
\(\frac{5\times\left(1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}\right)}{8\times\left(1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}\right)}\div\frac{15\times\left(1-\frac{1}{11}+\frac{1}{121}\right)}{16\times\left(1-\frac{1}{11}+\frac{1}{121}\right)}=\frac{5}{8}\div\frac{15}{16}=\frac{2}{3}\)
F=5-5x(1/3+1/9-1/27) /8-8x(1/3+1/9-1/27)
: 15-15x(1/11+1/121) /16-16x(1/11+1/121)
=5-5x1/8-8x1
: 15-15x1/16-16x1
=0:0=0
chắc vậy!
\(=\frac{5-\frac{5}{3}-\frac{5}{9}-\frac{5}{27}}{8-\frac{8}{3}-\frac{8}{9}-\frac{8}{27}}:\frac{15-\frac{15}{11}+\frac{15}{121}}{16-\frac{16}{11}+\frac{16}{121}}\)
\(=\frac{5\left(1-\frac{1}{3}-\frac{1}{9}-\frac{1}{27}\right)}{8\left(1-\frac{1}{3}-\frac{1}{9}-\frac{1}{27}\right)}:\frac{15\left(1-\frac{1}{11}+\frac{1}{121}\right)}{16\left(1-\frac{1}{11}+\frac{1}{121}\right)}\)
\(=\frac{5}{8}:\frac{15}{16}=\frac{5}{8}.\frac{16}{15}=\frac{2}{3}\)
\(A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot....\cdot\frac{960}{961}\)
\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot.....\cdot\frac{30.32}{31.31}\)
\(=\frac{\left(1.2.3....30\right)\left(3.4.5....32\right)}{\left(2.3.4....31\right)\left(2.3.4...31\right)}\)
\(=\frac{32}{31.2}=\frac{32}{62}=\frac{16}{31}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{960}{961}\)
\(\Rightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{30.32}{31.31}\)
\(\Rightarrow A=\frac{1.2.3....30}{2.3.4....31}.\frac{3.4.5.....32}{2.3.4.....31}\)
\(\Rightarrow A=\frac{1}{31}.\frac{32}{2}=\frac{16}{31}\)