Cho hai phương trình x2+px+15=0 và x2+qx+17=0 có nghiệm chung x0 và /p/+/q/=16 . Vậy x0 \(\in\) {}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình x 2 +px -5=0 có hai nghiệm x 1 và x 2 nên theo hệ thức vi-ét ta có:
x 1 + x 2 = -p/1 = -p ; x 1 x 2 =-5/1 =-5 (1)
Hai số – x 1 và – x 2 là nghiệm của phương trình:
[x – (- x 1 )] [x – (- x 2 )] =0
⇔ x 2 – (- x 1 x) – (- x 2 x) + (- x 1 )(- x 2 ) =0
⇔ x 2 + x 1 x + x 2 x + x 1 x 2 =0
⇔ x 2 + ( x 1 + x 2 )x + x 1 x 2 =0 (2)
Từ (1) và (2) ta có phuơng trình cần tìm là x 2 – px -5 =0
Giả sử x 1 , x 2 la hai nghiệm của phương trình x 2 + px + q = 0
Theo hệ thức Vi-ét ta có: x 1 + x 2 = - p/1 = - p; x 1 x 2 = q/1 = q
Phương trình có hai nghiệm là x 1 + x 2 và x 1 x 2 tức là phương trình có hai nghiệm là –p và q.
Hai số -p và q là nghiệm của phương trình.
(x + p)(x - q) = 0 ⇔ x 2 - qx + px - pq = 0 ⇔ x 2 + (p - q)x - pq = 0
Phương trình cần tìm: x 2 + (p - q)x - pq = 0
Để pt đã cho có nghiệm nguyên dương thì \(\Delta =p^2-4q\) là số chính phương.
Đặt \(p^2-4q=k^2\Leftrightarrow4q=\left(p-k\right)\left(p+k\right)\) với k là số tự nhiên.
Do p - k, p + k cùng tính chẵn, lẻ mà tích của chúng chẵn nên hai số này cùng chẵn.
Mặt khác p - k < p + k và q là số nguyên tố nên p - k = 2; p + k = 2q hoặc p - k = 4; p + k = q.
Nếu p - k = 4; p + k = q thì q chẵn do đó q = 2 (vô lí vì p + k > p - k).
Nếu p - k = 2; p + k = 2q thì 2p = 2q + 2 tức p = q + 1. Do đó q chẵn tức q = 2. Suy ra p = 3.
Thử lại ta thấy pt \(x^2-3x+2=0\) có nghiệm nguyên dương x = 1 và x = 2.
Vậy p = 3; q = 2.
Đáp án D
* Xét phương trình : x 2 – 4 x + 4 = 0
⇔ ( x - 2 ) 2 = 0 ⇔ x - 2 = 0 ⇔ x = 2
Vậy phương trình này có nghiệm duy nhất.
Để hai phương trình đã cho có nghiệm chung khi và chỉ khi x = 2 là nghiệm phương trình
x 2 + ( m + 1 ) x + m = 0 .Suy ra:
2 2 + ( m + 1 ) . 2 + m = 0
⇔ 4 + 2m + 2 + m = 0 ⇔ 6 + 3m = 0
⇔ 3m = -6 ⇔ m = -2
Gọi x 1 , x 2 là nghiệm của x 2 + p x + q = 0
Gọi x 3 , x 4 là nghiệm của x 2 + m x + n = 0
- Khi đó, theo vi-et: x 1 + x 2 = - p ; x 3 + x 4 = - m , x 3 . x 4 = n
- Theo yêu cầu ta có:
x 1 = x 3 3 x 2 = x 4 3 ⇒ x 1 + x 2 = x 3 3 + x 4 3 ⇔ x 1 + x 2 = ( x 3 + x 4 ) 3 − 3 x 3 x 4 ( x 3 + x 4 )
⇒ p = - m 3 + 3 m n ⇒ p = m 3 - 3 m n
Đáp án cần chọn là: C