\(\dfrac{7}{12}\)<\(\dfrac{x}{24}\) <\(\dfrac{2}{3}\)t
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{3.4-\dfrac{3.4}{4}-\dfrac{3.4}{289}-\dfrac{3.4}{85}}{4-\dfrac{4}{7}-\dfrac{4}{289}-\dfrac{4}{85}}=\dfrac{3.\left(4-\dfrac{4}{7}-\dfrac{4}{289}-\dfrac{4}{85}\right)}{1.\left(4-\dfrac{4}{7}-\dfrac{4}{289}-\dfrac{4}{85}\right)}=\dfrac{3}{1}=3\)
\(a,=\dfrac{5}{7}-\dfrac{33}{8}=-\dfrac{191}{56}\\ b,=\left(\dfrac{12}{17}+\dfrac{5}{17}\right)+\left(\dfrac{19}{7}+\dfrac{3}{7}\right)=1+3=4\\ c,=\left(0,125\cdot8\right)^{12}-\left(\dfrac{45}{15}\right)^3=1-3^3=-26\\ d,=\left(-\dfrac{1}{3}\right)\left(5\dfrac{2}{7}-2\dfrac{2}{7}\right)=-\dfrac{1}{3}\cdot3=-1\\ e,=\dfrac{3^4\cdot3^6}{3^9}=3\)
\(\dfrac{7}{12}>\dfrac{5}{12}\) (Vì tử số 7>5; phân số cùng mẫu số)
\(\dfrac{2}{5}=\dfrac{2.3}{5.3}=\dfrac{6}{15}\) -> Điền dấu "="
\(\dfrac{7}{10}< \dfrac{7}{9}\) (Vì phân số cùng tử, phân số nào có mẫu số lớn hơn thì phân số đó bé hơn. Ta có: 10>9 => 7/10 < 7/9)
\(\dfrac{7}{12}>\dfrac{5}{12}\)
\(\dfrac{2}{5}=\dfrac{6}{15}\)
\(\dfrac{7}{10}< \dfrac{7}{9}\)
a: =(2/7-2/7)(-4/7-5/9)=0
b:
Sửa đề: 9/13*(-12/17)+9/13*29/27
=9/13(-12/17+29/17)
=9/13*17/17=9/13
c: \(=\dfrac{1}{7}\left(4+\dfrac{6}{7}+\dfrac{8}{7}\right)=\dfrac{1}{7}\cdot6=\dfrac{6}{7}\)
d: =7/10(5/7+9/7+8/7+13/7)
=5*7/10=7/2
a: =4/5+1/5+2/3+1/3=1+1=2
b: =17/12+7/12+29/7-8/7=3+2=5
c: =3/5+2/5+16/7-1/7-1/7
=1+2=3
d: =2/5+3/5+2/3+1/3+7/4+1/4
=1+1+2
=4
g: \(=\dfrac{-3}{4}-\dfrac{1}{4}+\dfrac{5}{7}+\dfrac{2}{7}+\dfrac{3}{5}=\dfrac{3}{5}\)
h: \(=\dfrac{7}{19}\left(\dfrac{8}{11}+\dfrac{3}{11}\right)-\dfrac{12}{19}=\dfrac{7}{19}-\dfrac{12}{19}=-\dfrac{5}{19}\)
i: \(=\dfrac{2013}{7}\left(19+\dfrac{5}{8}-26-\dfrac{5}{8}\right)=\dfrac{2013}{7}\cdot\left(-7\right)=-2013\)
\(=\dfrac{7}{12}\cdot\left(25\dfrac{3}{5}-31\dfrac{3}{5}\right)=\dfrac{7}{12}\left(-6\right)=-\dfrac{7}{2}\)
`7/12<x/24<2/3`
`=>14/24<x/24<16/24`
`=>x=15`
\(\dfrac{7}{12}< \dfrac{x}{24}< \dfrac{2}{3}\)
\(\dfrac{14}{24}< \dfrac{x}{24}< \dfrac{16}{24}\)
\(14< x< 16\)
\(x=15\)