\(a^4+b^4+c^4+d^4>=4abcd\)CM bất đẳng thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a^4+b^4-2a^2b^2+c^4+d^4-2c^2d^2+2a^2b^2+2c^2d^2-4abcd\)
\(=\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2\ge0\)
\(\Rightarrow a^4+b^4+c^4+d^4-4abcd\ge0\)
\(\Rightarrow a^4+b^4+c^4+d^4\ge4abcd\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\pm b\\c=\pm d\\ab=cd\end{matrix}\right.\)
c và d ở đâu vại:>
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi a= b
Ta có đpcm
không cần giỏi cũng giải được mà. cứ giải đi không cần biết đúng hay sai là được
THẾ LÀ GIỎI RÙI
nhưng mình nghĩ mãi không ra nếu bạn nói được như vậy thì thử giải giúp mình xem
1. Giá trị của đa thức Q = x2 -3y + 2z tại x = -3 ; y = 0 ; z = 1 là :
A. 11 B. -7 C. 7 D. 2
2. Bậc của đơn thức (- 2x3) 3x4y là :
A.3 B. 5 C. 7 D. 8
3. Bất đẳng thức trong tam giác có các cạnh lần lượt là a,b,c là:
A. a + b > c B. a – b > c C. a + b ≥ c D. a > b + c
4: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 2 cm ; 9 cm ; 6 cm B. 3cm ; 4 cm ; 5 cm
C. 2 cm ; 4 cm ; 4 cm D. 4 cm ; 5 cm ; 7 cm