Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT đã cho sai
Phản ví dụ: \(a=-2;b=-1\) thì \(a^5+b^5=-33\)
\(\left(a^3+b^3\right)ab=-18\)
Rõ ràng trong trường hợp này \(a^5+b^5< \left(a^3+b^3\right)ab\)
trả lời
dùng bất đẳng thức cosi cho 2 số ko âm
sử dụng cộng mỗi cặp trên
đc 3 cặp
cộng lại là ra
Ta có : \(a^2+b^2+4\ge ab+2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+4\ge ab+2a+2b\)
\(\Leftrightarrow2\left(a^2+b^2+4\right)\ge2\left(ab+2a+2b\right)\)
\(\Leftrightarrow2a^2+2b^2+8\ge2ab+4a+4b\)
\(\Leftrightarrow2a^2+2b^2+8-2ab-4a-4b\ge0\)
\(\Leftrightarrow a^2+a^2+b^2+b^2+4+4-2ab-4a-4b\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-4a+4\right)+\left(b^2-4b+4\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\)
Bất đẳng thức cuối cùng luôn đúng nên ta có đpcm
Dấu đẳng thức xảy ra khi và chỉ khi a=b=2
Sai đề.