Cho tam giác ABC có góc A =900 cộng với góc B , đường cao CH. Cm
a, góc CBA bằng góc ACH
b, CH2= BH.AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat{HCA}+\widehat{ABH}=90^0\)(ΔABC vuông tại A)
\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)
Do đó: \(\widehat{HCA}=\widehat{HAB}\)
mà \(\widehat{KCA}=\dfrac{\widehat{HCA}}{2}\)(CK là tia phân giác của \(\widehat{HCA}\))
và \(\widehat{KAB}=\dfrac{\widehat{HAB}}{2}\)(AK là tia phân giác của \(\widehat{HAB}\))
nên \(\widehat{KCA}=\widehat{KAB}\)(đpcm)
a: (SAB) và (SAC) cùng vuông góc (ABC)
(SAB) cắt (SAC)=SA
=>SA vuông góc (ABC)
b: SA vuông góc CH
CH vuông góc AB
=>CH vuông góc (SAB)
=>(SCH) vuông góc (SAB)
a, từ A=90°+B
->B=90°_A
Xét Tam giác AHC vuông tại H
ACH=90°-A
->B=ACH