K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2023

a, từ A=90°+B

->B=90°_A

Xét Tam giác AHC vuông tại H

ACH=90°-A

->B=ACH

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

9 tháng 5 2023

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

b) Xét ΔCBD có CF là đường phân giác ứng với cạnh BD(gt)

nên \(\dfrac{FD}{FB}=\dfrac{CD}{CB}\)(Tính chất tia phân giác của tam giác)(1)

Xét ΔCBA có CE là đường phân giác ứng với cạnh BA(gt)

nên \(\dfrac{EB}{EA}=\dfrac{CB}{CA}\)(Tính chất tia phân giác của tam giác)(2)

Ta có: ΔABC\(\sim\)ΔBDC(cmt)

nên \(\dfrac{CB}{CD}=\dfrac{CA}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{CD}{CB}=\dfrac{CB}{CA}\)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{FD}{FB}=\dfrac{EB}{EA}\)(Đpcm)

a) Xét ΔABC và ΔBDC có 

\(\widehat{BCD}\) chung

\(\widehat{BAC}=\widehat{DBC}\)(gt)

Do đó: ΔABC∼ΔBDC(g-g)

a: Xét ΔABC và ΔBDC có

góc C chung

góc BAC=góc DBC

=>ΔABC đồng dạng với ΔBDC

b: FD/FB=CD/CB

EB/EA=CB/CA

mà CD/CB=CB/CA

nên FD/FB=EB/EA