Cho a,b là các số thực ko âm . CMR a+b >/ 12ab/(9+ab)
Cho a,b,c dương thoả a+b+c=3.CMR : a, sigma a^2/(a+2b^2) >/ 1 (AM-GM ngược dấu)
b, sigma a^2/a+2b^3 >/ 1
@tThắng-god bất giúp t
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn ko biết thì đừng có đăng linh tinh nhé hoktok 😋😋😋😋😋😋😋😋😋
a2(b+c)2+5bc+b2(a+c)2+5ac≥4a29(b+c)2+4b29(a+c)2=49(a2(1−a)2+b2(1−b)2)(vì a+b+c=1)
a2(1−a)2−9a−24=(2−x)(3x−1)24(1−a)2≥0(vì )<a<1)
⇒a2(1−a)2≥9a−24
tương tự: b2(1−b)2≥9b−24
⇒P⩾49(9a−24+9b−24)−3(a+b)24=(a+b)−94−3(a+b)24.
đặt t=a+b(0<t<1)⇒P≥F(t)=−3t24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\)
Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)
\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)
Từ \(abc=1\) VÀ \(a,b,c>0\) áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3;a^2+b^2+c^2\ge3\)
Ta có: \(VT=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
\(=\frac{a^4}{\left(1+ab\right)\left(1+ac\right)}+\frac{b^4}{\left(1+bc\right)\left(1+ca\right)}+\frac{c^4}{\left(1+ca\right)\left(1+cb\right)}\)
\(=\frac{a^4}{a+ab+ac+1}+\frac{b^4}{b+bc+ba+1}+\frac{c^4}{c+ca+cb+1}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c+2\left(ab+bc+ca\right)+3}\)
\(\Rightarrow VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a+b+c\right)+2\left(ab+bc+ca\right)}\left(a+b+c\ge3\right)\)
\(\Rightarrow VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(a^2+b^2+c^2+1\right)}\)( dễ c/m rằng \(3\left(a^2+b^2+c^2+1\right)\ge2\left(a+b+c+ab+bc+ca\right)\))
Vậy ta cần c/m \(\frac{\left(a^2+b^2+c^2\right)^2}{3\left(a^2+b^2+c^2+1\right)}\ge\frac{3}{4}\left(1\right)\)
Đặt \(a^2+b^2+c^2=t\ge3\). Ta có:
\(\left(1\right)\Leftrightarrow\left(t-3\right)\left(4t+3\right)\ge0\forall t\ge3\)
Đẳng thức xảy ra khi a=b=c=1
Hay sử dụng Am-GM ta có:
\(\frac{a^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3}{4}a\)
Thiết lập 2 BĐT tương tự r` cộng theo vế
Cm \(3\left(a^2b+b^2c+c^2a\right)\left(a^2c+b^2a+c^2b\right)\ge abc\left(a+b+c\right)^3\)
Do 2 vế BĐT đồng bậc nên ta chuẩn hóa \(a+b+c=3\)
BĐT <=> \(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3\right)+a^2b^2c^2\left(a+b+c\right)\right]\ge27abc\)
<=>\(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\right)\right]\ge27abc\)
Áp dụng BĐT Schur ta có:
\(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\ge ab^2c\left(ab+bc\right)+a^2bc\left(ab+ac\right)+abc^2\left(ac+bc\right)\)
Khi đó BĐT
<=>\(3\left(a^3+b^3+c^3\right)+3a^2\left(b+c\right)+3b^2\left(a+c\right)+3c^2\left(a+b\right)\ge27\)
<=> \(3\left(a^3+b^3+c^3\right)+3a^2\left(3-a\right)+3b^2\left(3-b\right)+3c^2\left(3-c\right)\ge27\)
<=> \(a^2+b^2+c^2\ge3\) luôn đúng do \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)( ĐPCM)
Dấu bằng xảy ra khi a=b=c
Bài 2
Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
=> \(VT\ge\frac{|a+1-b|+|b+1-c|+|c+1-a|}{\sqrt{2}}\)
Áp dụng BĐT \(|x|+|y|+|z|\ge|x+y+z|\)
=> \(VT\ge\frac{|a+1-b+b+1-c+c+1-a|}{\sqrt{2}}=\frac{3}{\sqrt{2}}\)(ĐPCM)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a+b\ge2\sqrt{ab}\)
\(9+ab\ge2\sqrt{9ab}=6\sqrt{ab}\)
\(\Rightarrow VT=a+b\ge\frac{2\sqrt{ab}\cdot6\sqrt{ab}}{9+ab}=\frac{12ab}{9+ab}=VP\)
Bài 2:
a)\(\frac{a^2}{a+2b^2}=a-\frac{2ab^2}{a+2b^2}\ge a-\frac{2ab^2}{3\sqrt[3]{ab^4}}=a-\frac{2}{3}\sqrt[3]{a^2b^2}\)
\(BDT\Leftrightarrow\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\le3\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt[3]{b^2c^2}\le\frac{1}{3}\left(bc+b+c\right)\). Tương tự r` cộng theo vế ta có ĐPCM
b)\(\frac{a^2}{a+2b^3}=a-\frac{2ab^2}{a+2b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{ab^6}}=a-\frac{2}{3}b\sqrt[3]{a^2}\)
\(\ge a-\frac{2}{3}b\frac{\left(a+a+1\right)}{3}=a-\frac{2b}{9}-\frac{4ab}{9}\)
Vậy \(VT\ge a+b+c-\frac{2}{9}\left(a+b+c\right)-\frac{4}{9}\left(ab+bc+ca\right)\)
\(\ge\frac{7}{3}-\frac{4\left(a+b+c\right)^2}{27}=1=VP\)
thắng đánh máy mấy bài này có mỏi tay ko