K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
21 tháng 2 2023

a) \(ĐKXĐ:\left\{{}\begin{matrix}x+1\ne0\\x\ne0\end{matrix}\right.< =>x\ne\left\{0;-1\right\}\)

b) \(\dfrac{3}{x+1}+\dfrac{5}{x}=0\\ < =>\dfrac{3x+5\left(x+1\right)}{x\left(x+1\right)}=0\\ =>3x+5\left(x+1\right)=0\\ < =>3x+5x+5=0\\ < =>8x=-5\\ < =>x=-\dfrac{5}{8}\left(TMDK\right)\)

Vậy tập nghiệm phương trình : \(S=\left\{-\dfrac{5}{8}\right\}\)

15 tháng 12 2020

Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(\left|a\right|\ge2;\left|b\right|\ge2\right)\)

\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x^3+\dfrac{1}{x^3}\right)+\left(y^3+\dfrac{1}{y^3}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)^3-3\left(y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\a^3+b^3=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\\left(a+b\right)^3-3ab\left(a+b\right)=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\125-15ab=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\ab=9-m\end{matrix}\right.\)

\(\Rightarrow a,b\) là nghiệm của phương trình \(t^2-5t+9-m=0\left(1\right)\)

a, Nếu \(m=3\), phương trình \(\left(1\right)\) trở thành

\(t^2-5t+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y^2-3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3\pm\sqrt{5}}{2}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=3\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3\pm\sqrt{5}}{2}\\y=1\end{matrix}\right.\)

Vậy ...

b, \(\left(1\right)\Leftrightarrow t=\dfrac{5\pm\sqrt{4m-11}}{2}\left(m\ge\dfrac{11}{4}\right)\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5\pm\sqrt{4m-11}}{2}\\b=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{5\pm\sqrt{4m-11}}{2}\\y+\dfrac{1}{y}=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(5\pm\sqrt{4m-11}\right)+2=0\left(2\right)\\2y^2-\left(5\mp\sqrt{4m-11}\right)+2=0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(2\right)\) có nghiệm dương

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(5\pm\sqrt{4m-11}\right)^2-16\ge0\\\dfrac{5\pm\sqrt{4m-11}}{2}>0\\1>0\end{matrix}\right.\)

\(\Leftrightarrow...\)

a: Thay m=-5 vào (1), ta được:

\(x^2+2\left(-5+1\right)x-5-4=0\)

\(\Leftrightarrow x^2-8x-9=0\)

=>(x-9)(x+1)=0

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+2\right)^2-4\left(m-4\right)=4m^2+8m+4-4m+16=4m^2+4m+20>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt 

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\)

\(\Leftrightarrow x_1^2+x_2^2=-3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow\left(2m+2\right)^2+m-4=0\)

\(\Leftrightarrow4m^2+9m=0\)

=>m(4m+9)=0

=>m=0 hoặc m=-9/4

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=1+(3+m)=4+m\geq 0\Leftrightarrow m\geq -4$ (chứ không phải với mọi m như đề bạn nhé)!

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2\\ x_1x_2=-(m+3)\end{matrix}\right.\)

$x_1, x_2\neq 0\Leftrightarrow -(m+3)\neq 0\Leftrightarrow m\neq -3$

$\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{-8}{3}$

$\Leftrightarrow \frac{x_1^2-x_2^2}{x_1x_2}=\frac{-8}{3}$

$\Leftrightarrow \frac{-2(x_1-x_2)}{-(m+3)}=\frac{-8}{3}$
$\Leftrightarrow x_1-x_2=\frac{4}{3}(m+3)$

$\Rightarrow (x_1-x_2)^2=\frac{16}{9}(m+3)^2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=\frac{16}{9}(m+3)^2$
$\Leftrightarrow 4+4(m+3)=\frac{16}{9}(m+3)^2$

$\Leftrightarrow m+3=3$ hoặc $m+3=\frac{-3}{4}$

$\Leftrightarrow m=0$ hoặc $m=\frac{-15}{4}$ (đều thỏa mãn)

Bài 1: 

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}=1\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{10}{3}\end{matrix}\right.\)

Bài 2:

Theo đề, ta có:

\(\left\{{}\begin{matrix}2a-3b=4\\-a-2b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a-3b=4\\-2a-4b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{12}{7}\\a=-\dfrac{4}{7}\end{matrix}\right.\)

câu 1 giải các phương trình sau.a) 4x+8=3x-15b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)câu 2 giải các bất phương trình sau và biểu diễn tập nghiệm trên trục sốa) 2x-8\(\ge\)0.b)10+10x>0câu 3 giải bài toán bằng các lập phương trìnhMột học sinh đi từ nhà đến trường với vận tốc 15km/h,rồi từ trường về nhà với vận tốc 20km/h.Biết thời gian đi nhiều hơn thời gian về là 15 phút. Tĩnh quãng đường...
Đọc tiếp

câu 1 giải các phương trình sau.

a) 4x+8=3x-15

b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

câu 2 giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số

a) 2x-8\(\ge\)0.

b)10+10x>0

câu 3 giải bài toán bằng các lập phương trình

Một học sinh đi từ nhà đến trường với vận tốc 15km/h,rồi từ trường về nhà với vận tốc 20km/h.Biết thời gian đi nhiều hơn thời gian về là 15 phút. Tĩnh quãng đường từ nhà đến trường của người đó.

câu 4 Cho hình chữ nhật ABCD có AB=8cm,BC=6cm.Kẻ đường cao AH của tam giác ADB(AH\(\perp\)DB,H\(\in\)DB).

a) Chúng minh \(\Delta\)HAD đồng dạng \(\Delta\)ABD.

b) Chứng minh:AD\(^2\)=DH.DB.

c)Tính độ dài các đoạn thẳng AH,DH.

d) Tính tỉ số diện tích \(\Delta\)HAD và \(\Delta\)ABD từ đó suy ra tỉ số đồng dạng của nó.

         giúp mình với mai mình thi rồi SOS !!!!!!!

 

 

1

2:

a: =>x-4>=0

=>x>=4

b: =>x+1>0

=>x>-1

31 tháng 8 2021

b, ĐK: \(x\ne8\)

\(A=\dfrac{x-5}{x-8}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5>0\\x-8>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5< 0\\x-8< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>5\\x>8\end{matrix}\right.\\\left\{{}\begin{matrix}x< 5\\x< 8\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>8\\x< 5\end{matrix}\right.\)

31 tháng 8 2021

a/ -4 + 2x < 0 

2x < 4

x < 2 

2

b) Để A dương 

\(\left[{}\begin{matrix}x< 5\\x>8\end{matrix}\right.\)

23 tháng 4 2022

\(ĐKXĐ:x-3\ne0\Rightarrow x\ne3;x-1\ne0\Rightarrow x\ne1\\ \dfrac{1}{x-3}+2-1-\dfrac{5}{x-1}=0\\ \Leftrightarrow\dfrac{1}{x-3}+1-\dfrac{5}{x-1}=0\\ \Leftrightarrow\dfrac{1+x-3}{x-3}-\dfrac{5}{x-1}=0\\ \Leftrightarrow\dfrac{-2+x}{x-3}-\dfrac{5}{x-1}=0\\ \Leftrightarrow\dfrac{\left(-2+x\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{5\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{x^2-3x+2}{\left(x-3\right)\left(x-1\right)}-\dfrac{5x-15}{\left(x-3\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{x^2-3x+2-5x+15}{\left(x-3\right)\left(x-1\right)}=0\\ \Rightarrow x^2-8x+17=0\\ \Leftrightarrow\left(x^2-8x+16\right)+1=0\\ \Leftrightarrow\left(x-4\right)^2=-1\left(vô lí\right)\)

suy ra pt vô nghiệm

7 tháng 2 2022

\(\Leftrightarrow\dfrac{x+10}{2012}+1+\dfrac{x+8}{2014}+1+\dfrac{x+6}{2016}+1+\dfrac{x+4}{2018}+1=0\)

\(\Leftrightarrow\dfrac{x+2022}{2012}+\dfrac{x+2022}{2014}+\dfrac{x+2022}{2016}+\dfrac{x+2022}{2018}=0\Leftrightarrow x=-2022\)

do 2 pt tương đường nhau nên x = -2022 cũng là nghiệm của pt 

\(\left(m-1\right)x+2020m-6=0\)

thay vào ta được : \(-2022\left(m-1\right)+2020m-6=0\)

\(\Leftrightarrow-2m+2022-6=0\Leftrightarrow-2m=-2016\Leftrightarrow m=1008\)