Từ các số 1,2,3,..,9 có thể lập được bao nhiêu số có 3 chữ số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Gọi số cần tìm có dạng là
Mỗi bộ ba số là một chỉnh hợp chập 3 của 9 phần tử.
Vậy số các số cần tìm là A 9 3 số.
Chọn B
Lấy ra 3 chữ số từ 9 chữ số và sắp xếp 3 chữ số đó theo thứ tự, mỗi cách sắp xếp tạo nên 1 số có 3 chữ số khác nhau. Như vậy, có A 9 3 số cần tìm.
* Nhận xét: Mục đích bài toán là phân biệt hai khái niệm: Chỉnh hợp và tổ hợp. Học sinh có thể giải bài này bằng phương pháp nhân: 9.8.7, và so sánh với 4 đáp án. Hai chỉnh hợp khác nhau thì có thể khác nhau về phần tử hoặc khác nhau về thứ tự các phần tử. Hai tổ hợp khác nhau thì khác nhau về phần tử.
*Lý thuyết Chỉnh hợp
- Cho tập hợp A có n phần tử và cho số nguyên k, (1 ≤ k ≤ n). Khi lấy k phần tử của A và sắp xếp chúng theo một thứ tự, ta được một chỉnh hợp chập k của n phần tử của A (gọi tắt là một chỉnh hợp n chập k của A).
- Số các chỉnh hợp chập k của một tập hợp có n phần tử là:
- Một số qui ước:
*Lý thuyết Tổ hợp
- Cho tập hợp A có n phần tử và cho số nguyên k, (1 ≤ k ≤ n). Mỗi tập hợp con của A có phần tử được gọi là một tổ hợp chập k của n phần tử của A.
- Số các chỉnh hợp chập k của một tập hợp có n phần tử là :
- Một số quy ước: với qui ước này ta có đúng với số nguyên dương k, thỏa 0 ≤ k ≤ n
PT 14.1. Chọn B
TH1
TH2: vì
Như vậy, có số cần tìm
PT 14.2.
Chọn C
Mỗi tập con có 3 phần tử thuộc tập {1,2,...,9} xác định duy nhất một số có 3 chữ số tăng dần từ trái qua phải (đảm bảo chữ số đầu tiên khác 0).
Mỗi tập con có 3 phần tử thuộc tập {0,1,2....,9} xác định duy nhất một số có 3 chữ số giảm dần từ trái qua phải.
Như vậy, có số cần tìm.
1a) gọi số cần lập là abcde
(a khác 0...)
chọn a thuộc tập số trên\{0} => có 4 cách chọn
chọn b có 5 c
chọn c có 5c
chọn d có 5c
chọn e có 5c
ADQT nhân có 4x5x5x5x5 = ....
vậy có....
b)chọn a khác 0 có 4 c
chọn b khác a có 4c
chọn c khác a và b có 3 c
chọn d khác a, b, c, có 2c
=> ADQT nhân có 4x4x3x2 =...
vậy...
c) chọn a khác o có 4 c
chọn các c/số còn lại là 1 chỉnh hợp chập 2 của 4 phần tử(trừ a) => có 4A2 cách
ADQT nhân có 4x 4A2 =...
Vậy...
d) tương tự câu a
Vì 1 + 2 + 3 ⋮ 3 nên ta có "
+) 3 cách chọn chữ số hàng trăm
+) 2 cách chọn chữ số hàng chục
+) 1 cách chọn chữ số hàng đơn vị
=> Lập được tất cả các số chia hết cho 3 từ các số 1 ; 2 và 3 là :
3 x 2 x 1 = 6 ( số )
Đáp số : với các số 1 ; 2 ; 3 thì ta lập được 6 số có 3 chữ số chia hết cho 3
~~Học tốt~~
- Có 3 cách chon chữ số hàng trăm
- Có 3 cách chọn chữ số hàng chục
- Có 2 cách chọn chữu số hàng đơn vị
=> Từ các số đã cho ta lập được :
3 x 3 x 2 = 18 ( số )
bn tự liệt kê ra rồi sem số nào chia hết cho 9 thì viết ra
có bao nhiêu số có 2 chữ số chia hết cho 3:12 số
có bao nhiêu số có 3 chữ số chia hết cho 3:24 số
a. Lập số có 3 chữ số thì chữ số hàng trăm phải khác 0, nên chữ số hàng trăm có 3 cách chọn (3,5,6). Hàng chục có 3 cách chọn, hàng đơn vị có 2 cách chọn.
Vậy số các số phải tìm là: 3 x 3 x 2 = 18 (số)
b. Trong các số trên các số chia hết cho 9 là: 306, 360, 603, 630.
Để lập được một số có 3 chữ số từ các số 1, 2, 3, .., 9, ta cần chọn 3 số từ tập các số trên và sắp xếp chúng theo một thứ tự cụ thể.
Số cách chọn 3 số từ 9 số là: C(9,3) = 84
Mỗi cách chọn 3 số đều có thể sắp xếp thành một số có 3 chữ số, do đó số lượng số có 3 chữ số từ các số 1,2,3,..,9 là 84 x 3! = 504.
Vậy có thể lập được 504 số có 3 chữ số từ các số 1, 2, 3, .., 9.
ai r bn ơi