K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2015

A=1+4+4^2+...+4^99

=>4A=4+4^2+...+4^100

=>4A-A=4+4^2+...+4^100-1-4-4^2-...-4^99

=>3A=4^100-1

=>A=4^100-1/3 < 4^100

vậy A<B

A=12.34.56...99100

⇒A<23.45.67...100101

⇒A2<23.45.67...100101.12.34.56...99100

⇒A2<1101<1100=1102

A=12.34.56...99100

⇒A<23.45.67...100101

⇒A2<23.45.67...100101.12.34.56...99100

⇒A2<1101<1100=1102

23 tháng 9 2015

S = 3100 - 1

24 tháng 8

Ad cho xin ý kiến vs ạ

29 tháng 11 2021

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\\ \Rightarrow3B-B=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\\ \Rightarrow2B=3^{101}-3\\ \Rightarrow B=\dfrac{3^{101}-3}{2}\)

29 tháng 11 2021

B = 31 + 32 + 33 + .... + 399 + 3100

3B = 3(31 + 32 + 33 + ..... + 399 + 3100)

3B = 32 + 33 + 34 +...... + 3100 + 3101

3B - B = 2B = (32 + 33 + 34 + .... + 3100 + 3101) - ( 31 + 32 + 33 + .... + 3100)

2B = (32 - 32) + (33 - 33) +.....+ ( 3100 - 3100) + ( 3101 - 1)

2B = 0 + 0 + 0 + ..... +0 + 3101 - 1

2B = 3101 - 1

B = (3101 - 1)  : 2

24 tháng 8 2017

1.S=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^96+4^97+4^98)+4^99

   S=1x(1+4+16)+4^3x(1+4+16)+...+4^96x(1+4+16)+4^99

   S=1x21+4^3x21+...+4^96x21+4^99

   S=21x(1+4^3+...+4^96)+4^99

   

12 tháng 1 2019

ko biết

AH
Akai Haruma
Giáo viên
25 tháng 10

Lời giải:

$A=1+4+4^2+4^3+...+4^{99}$

$4A=4+4^2+4^3+4^4+....+4^{100}$

$\Rightarrow 4A-A=4^{100}-1$

$\Rightarrow 3A=4^{100}-1=B-1< B$
$\Rightarrow A< \frac{B}{3}$