K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

Mình nghĩ đề bạn thiếu đó.

6 tháng 8 2021

đề đủ đó bạn

 

27 tháng 8 2015

Em tự vẽ hình nhé~

Lấy E trên AC sao cho DE song song với AB.  Theo tính chất đường phân giác và định lý Ta-let,

ta có \(\frac{CE}{EA}=\frac{CD}{DB}=\frac{AC}{AB}=\frac{b}{c}\to\frac{CE}{EA}=\frac{b}{c}\to\frac{CE+EA}{EA}=\frac{b+c}{c}\to\frac{b}{EA}=\frac{b+c}{c}\to AE=\frac{bc}{b+c}\).

Mặt khác AD là phân giác góc A nên \(\angle ADE=\angle DAB=\angle DAE\to\Delta ADE\) cân ở E.

Kẻ EH vuông góc với AD, suy ra H là trung điểm AD. Xét tam giác vuông AEH có \(AH=AE\cdot\cos\alpha=\frac{bc}{b+c}\cdot\cos\alpha\to AD=\frac{2bc}{b+c}\cdot\cos\alpha.\)

26 tháng 8 2015

Dễ thì lm đi Hunter of Death

21 tháng 6 2021

giúp mik nhanh câu c dc khum ạ

2 câu kia mik xong r

cảm ơn các bạn

28 tháng 6 2021

A B D C

\(S_{ABC}=S_{ADB}+S_{ADC}\)

<=>\(bc.sinA=AD\cdot c\cdot sin\dfrac{A}{2}+AD\cdot b\cdot sin\dfrac{A}{2}\)

<=>\(bc.sinA=AD\cdot sin\dfrac{A}{2}\left(b+c\right)\)

<=>\(bc.sin2\alpha=AD\cdot sin\alpha\left(b+c\right)\)

<=>\(2bc.sin\alpha.cos\alpha=AD\cdot sin\alpha\left(b+c\right)\)

<=>\(AD=\dfrac{2bc\cdot cos\alpha}{b+c}\) (dpcm)

tính p = (a+b+c)/2

AD=2/(b+c)*  caăn (p*b*c*(p-a))