K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

A B C O H F D E M K T A B C D E A B C I G D M Hình 1 Hình 2 Hình 3

Câu 1: (Hinh 1)

a) Gọi AO giao BC tại T. Áp dụng ĐL Thales, hệ quả ĐL Thales ta có các tỉ số:

\(\frac{AK}{AB}=\frac{CM}{BC};\frac{CF}{CA}=\frac{OM}{CA}=\frac{TO}{TA}=\frac{TE}{TB}=\frac{TM}{TC}=\frac{TE+TM}{TB+TC}=\frac{ME}{BC}\)

Suy ra \(\frac{AK}{AB}+\frac{BE}{BC}+\frac{CF}{CA}=\frac{CM+BE+ME}{BC}=1\)(đpcm).

b) Dễ có \(\frac{DE}{AB}=\frac{CE}{CB};\frac{FH}{BC}=\frac{BE+CM}{BC};\frac{MK}{CA}=\frac{BM}{BC}\). Từ đây suy ra:

\(\frac{DE}{AB}+\frac{FH}{BC}+\frac{MK}{CA}=\frac{CE+BM+BE+CM}{BC}=\frac{2\left(BE+ME+CM\right)}{BC}=2\)(đpcm).

Câu 2: (Hình 2)

Qua C kẻ đường thẳng song song với AD cắt tia BA tại E. Khi đó dễ thấy \(\Delta\)CAE cân tại A.

Áp dụng hệ quả ĐL Thales có: \(\frac{AD}{CE}=\frac{BA}{BE}\) hay \(\frac{AD}{CE}=\frac{c}{b+c}\Rightarrow AD=\frac{c.CE}{b+c}\)

Vì \(CE< AE+AC=2b\)(BĐT tam giác) nên \(AD< \frac{2bc}{b+c}\)(đpcm).

Câu 3: (Hình 3)

Gọi M và D thứ tự là trung điểm cạnh BC và chân đường phân giác ứng với đỉnh A của \(\Delta\)ABC.

Do G là trọng tâm \(\Delta\)ABC nên \(\frac{AG}{GM}=2\). Áp dụng ĐL đường phân giác trong tam giác ta có:

\(\frac{IA}{ID}=\frac{BA}{BD}=\frac{CA}{CD}=\frac{BA+CA}{BD+CD}=\frac{AB+AC}{BC}=\frac{2BC}{BC}=2\)

Suy ra \(\frac{IA}{ID}=\frac{GA}{GM}\left(=2\right)\). Áp dụng ĐL Thales đảo vào \(\Delta\)AMD ta được IG // BC (đpcm).

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

28 tháng 3 2018

a)  Xét  \(\Delta HAC\) và       \(\Delta ABC\) có:

\(\widehat{AHC}=\widehat{BAC}=90^0\)

\(\widehat{C}\)   CHUNG

suy ra:    \(\Delta HAC~\Delta ABC\)

b)  Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

       \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)  \(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)

 \(\Delta HAC~\Delta ABC\)   \(\Rightarrow\)\(\frac{AH}{AB}=\frac{AC}{BC}\)

hay    \(\frac{AH}{6}=\frac{8}{10}\)   \(\Rightarrow\) \(AH=\frac{6.8}{10}=4,8\)

28 tháng 3 2018

mik làm dc câu a vs b giống bạn à 2 câu khi kh biết làm

18 tháng 11 2016

goc CA la sao???????

a: Xét ΔABC vuông tại A có AD là đường cao

nên \(AD^2=BD\cdot CD\)

b: \(CB=\sqrt{3^2+4^2}=5\left(cm\right)\)

AD=3*4/5=2,4cm

c: BI là phân giác

=>DI/IA=DB/BA

AK là phân giác

=>DK/KC=DA/AC

mà DB/BA=DA/AC

nên DI/IA=KD/KC

=>KI//AC