K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2023

Ta có:
\(3x+4=3x-9+13\)
           \(=3\left(x-3\right)+13\)
Mà \(3\left(x-3\right)⋮x-3\)
\(\Rightarrow13⋮x-3\)
Do đó \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Ta có bảng sau:

    \(x-3\)      \(-13\)     \(-1\)          \(1\)        \(13\)
       \(x\)       \(-10\)      \(2\)          \(4\)       \(16\)
6 tháng 2 2023

3x + 4 chia hết cho x - 3

=> 3x - 9 + 13 chia hết cho x - 3

=> 3(x - 3)  + 13 chia hết cho x - 3

=> 13 chia hết cho x - 3

=> x - 3 thuộc Ư(13)

=> x - 3 thuộc {-1;1-13;13}

=> x thuộc {2;4;-10;16}

1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)

=-27x^3-18x^2+4x+10

2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27

=7x^3+37x^2+46x+33

5:

\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)

\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)

=7x^3-48x^2+8x-35

`@` `\text {Ans}`

`\downarrow`

`a,`

`P(x)+Q(x) = (3x^4-2x^3+3x+11)+(3x^2- x^3-5x+3x+4-x+2x^4)`

`= 3x^4-2x^3+3x+11+3x^2- x^3-5x+3x+4-x+2x^4`

`= (3x^4 + 2x^4) + (-2x^3 - x^3) + 3x^2 + (3x + 3x - 5x - x) + (11+4)`

`= 5x^4 - 3x^3 + 3x^2 + 15`

`b,`

` A(x) = P(x) + B(x)`

Thay `B(x) = 2x^3 - 3x^4 - 2`

`A(x) = P(x) + B (x)`

`=> A (x) = (2x^3 - 3x^4 - 2)+(3x^4 - 2x^3 + 3x + 11)`

`= 2x^3 - 3x^4 - 2+ 3x^4 - 2x^3 + 3x + 11`

`= (2x^3 - 2x^3) + (-3x^4 + 3x^4) + 3x + (-2+11) `

`= 3x + 9`

`A(x) = 3x+9 = 0`

`=> 3x = 0-9`

`=> 3x = -9`

`=> x = -9 \div 3`

`=> x = -3`

Vậy, nghiệm của đa thức là `x = -3.`

Mình thu gọn 2 đa thức trước r mới cộng nhé

\(P\left(x\right)=3x^2+7+2x^4-3x^2-4-5x+2x^3\)

\(P\left(x\right)=\left(3x^2-3x^2\right)+\left(7-4\right)+2x^4-5x+2x^3\)

\(P\left(x\right)=2x^4+2x^3-5x+3\)

\(Q\left(x\right)=-3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

\(Q\left(x\right)=\left(-3x^3+x^3\right)+2x^2+\left(-x^4+5x^4\right)+\left(x+4x\right)-2\)

\(Q\left(x\right)=-2x^3+4x^4+2x^2+5x-2\)

\(P\left(x\right)+Q\left(x\right)=2x^4+2x^3-5x+3-2x^3+4x^4+2x^2+5x-2\)

\(P\left(x\right)+Q\left(x\right)=\left(2x^4+4x^4\right)+\left(2x^3-2x^3\right)+\left(-5x+5x\right)+\left(3-2\right)+2x^2\)

\(P\left(x\right)+Q\left(x\right)=6x^4+1+2x^2\)

2 tháng 11 2019

+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)

+) Lỗi lớn: Dấu bằng xảy ra:  \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )

Nhưng mà thử vào chọn x= 1=>  A = 3 > 1. Nên bài này sai. 

Làm lại nhé!

A = | x - 2 | + | 2 x - 3  | + | 3  x - 4 |

 = | x - 2 | + | 2 x - 3  | + 3 | x - 4/3 |

= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |

= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x  | + | 2x - 8/3 | )

\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |

= 2/3 + 1/3 = 1

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)

18 tháng 6 2018

f(x)+g(x)=-3x^2+x-1+x^4-x^3-x^2+3x^4+2x^3-x^4-x^2+x^3-x+5-5x^3+x^2+3x^4

            =(-3x^2-x^2-x^2+x^2)+(x-x)-(1-5)+(x^4+3x^4-x^4+3x^4)-(x^3-2x^3-x^3+5x^3)

            =-4x^2+4+6x^4+3x^3