giải hpt\(\hept{\begin{cases}\left(x+1\right)^2\left(y+1\right)^2=27xy\\\left(x^2+1\right)\left(y^2+1\right)=10xy\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
Nhận thấy \(x=0\) hay \(y=0\) đều không phải nghiệm của hệ, hệ tương đương:
\(\left\{{}\begin{matrix}\frac{\left(x^2+2x+1\right)\left(y^2+2y+1\right)}{xy}=27\\\frac{\left(x^2+1\right)\left(y^2+1\right)}{xy}=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{x}+2\right)\left(y+\frac{1}{y}+2\right)=27\\\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=10\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=a\\y+\frac{1}{y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+2\right)\left(b+2\right)=27\\ab=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=\frac{13}{2}\\ab=10\end{matrix}\right.\)
Theo Viet đảo, a;b là nghiệm của: \(t^2-\frac{13}{2}t+10=0\Rightarrow\left[{}\begin{matrix}t=4\\t=\frac{5}{2}\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}a=4\\b=\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+\frac{1}{x}=4\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+1=0\\y^2-\frac{5}{2}y+1=0\end{matrix}\right.\) \(\Rightarrow...\)
- Với \(\left\{{}\begin{matrix}a=\frac{5}{2}\\b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2-\frac{5}{2}x+1=0\\y^2-4y+1=0\end{matrix}\right.\) \(\Rightarrow...\)
để ý 1 tý,,bạn sẽ tách được
\(\hept{\begin{cases}y\left(x+y\right)=4y-\left(x^2+1\right)\\2y^2\left(x+y\right)=7y^2-\left(x^2+1\right)^2\end{cases}}\)
sau đó bạn sẽ nhân pt (1) với 2y,,,,,rồi triển thôi
HPT
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)+y\left(x+y-2\right)=2y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)
y=0 khong phai nghiem cua hpt
\(\Rightarrow\hept{\begin{cases}\left(\frac{x^2}{y}+\frac{1}{y}\right)+\left(x+y-2\right)=2\\\left(\frac{x^2}{y}+\frac{1}{y}\right)\left(x+y-2\right)=1\end{cases}}\)
Dat \(\hept{\begin{cases}\frac{x^2}{y}+\frac{1}{y}=a\\x+y-2=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=2\\ab=1\end{cases}}\)
Đến đây là ngon
\(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
\(\Leftrightarrow x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(\Leftrightarrow x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left[\left(3+2\sqrt{2}\right)+\left(3-2\sqrt{2}\right)\right]\)
\(\Leftrightarrow x^3=6+3\sqrt[2]{9-8}.x\)
\(\Leftrightarrow x^3=6+3x\)
\(\hept{\begin{cases}\left(x+1\right)\left(y-1\right)=2\\\left(x-3\right)\left(y+1\right)=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}xy-x+y=3\\xy+x-3y=-3\end{cases}\Leftrightarrow\hept{\begin{cases}xy-x+y=3\\2xy-2y=0\end{cases}.}}\)
(Đã nhân vế trái các phương trinh, giữ nguyên phương trình trên, cọng hai phương trình vế theo vế tương ứng thay cho phương trình dưới)
\(\Leftrightarrow\hept{\begin{cases}xy-x+y=3\\2y\left(x-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3;.y=0\\x=1;y=2\end{cases}.}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-x+y=3\\2y\left(x-1\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=0\\x=-3\end{cases}}\\\hept{\begin{cases}xy-x+y=3\\x-1=0\end{cases}}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x;y\right)=\left(-3;0\right)\\\left(x;y\right)=\left(1;2\right)\end{cases}.}}\)
\(\hept{\begin{cases}\left(x-y\right)^2+4=3y-5x+2\sqrt{\left(x+1\right)\left(y-1\right)}\left(1\right)\\\frac{3xy-5y-6x+11}{\sqrt{x^3+1}}=5\left(2\right)\end{cases}}\)
\(ĐK:x>-1;y\ge1\)
Đặt \(\sqrt{x+1}=u,\sqrt{y-1}=v\left(u>0,v\ge0\right)\Rightarrow\hept{\begin{cases}x=u^2-1\\y=v^2+1\end{cases}}\)
Khi đó, phương trình (1) trở thành: \(\left(u^2-v^2-2\right)^2+4=3\left(v^2+1\right)-5\left(u^2-1\right)+2uv\)
\(\Leftrightarrow\left(u^2-v^2-2\right)^2+4-3v^2+5u^2-8-2uv=0\)
\(\Leftrightarrow\left(u^2-v^2-2\right)^2+4\left(u^2-v^2-2\right)+4+u^2+v^2-2uv=0\)
\(\Leftrightarrow\left(u^2-v^2\right)^2+\left(u-v\right)^2=0\)\(\Leftrightarrow\left(u-v\right)^2\left[\left(u+v\right)^2+1\right]=0\)
Dễ thấy \(\left(u+v\right)^2+1>0\)nên \(\left(u-v\right)^2=0\Leftrightarrow u=v\)
hay \(\sqrt{x+1}=\sqrt{y-1}\Leftrightarrow x+1=y-1\Leftrightarrow y=x+2\)
Từ (2) suy ra \(3xy-5y-6x+11=5\sqrt{x^3+1}\)(3)
Thay y = x + 2 vào (3), ta được: \(3x\left(x+2\right)-5\left(x+2\right)-6x+11=5\sqrt{x^3+1}\)
\(\Leftrightarrow3x^2+6x-5x-10-6x+11=5\sqrt{x^3+1}\)
\(\Leftrightarrow3x^2-5x+1=5\sqrt{x^3+1}\)
\(\Leftrightarrow3\left(x^2-x+1\right)-2\left(x+1\right)-5\sqrt{x+1}\sqrt{x^2-x+1}=0\)
\(\Leftrightarrow\left(3\sqrt{x^2-x+1}+\sqrt{x+1}\right)\left(\sqrt{x^2-x+1}-2\sqrt{x+1}\right)=0\)
Dễ thấy \(3\sqrt{x^2-x+1}+\sqrt{x+1}>0\forall x>-1\)nên \(\sqrt{x^2-x+1}=2\sqrt{x+1}\)
\(\Leftrightarrow x^2-x+1=4\left(x+1\right)\Leftrightarrow x^2-5x-3=0\)
Giải phương trình trên tìm được hai nghiệm là \(\frac{5\pm\sqrt{37}}{2}\left(TMĐK\right)\)
+) Với \(x=\frac{5+\sqrt{37}}{2}\Rightarrow y=\frac{9+\sqrt{37}}{2}\)
+) Với \(x=\frac{5-\sqrt{37}}{2}\Rightarrow y=\frac{9-\sqrt{37}}{2}\)
Vậy hệ phương trình có 2 nghiệm\(\left(x;y\right)\in\left\{\left(\frac{5+\sqrt{37}}{2};\frac{9+\sqrt{37}}{2}\right);\left(\frac{5-\sqrt{37}}{2};\frac{9-\sqrt{37}}{2}\right)\right\}\)