cho tam giác ABC có Â = 120 độ. Trên tia phân giác của Â, lấy D sao cho AD=AB+AC. Chứng minh rằng tam giác BCD đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy sao cho mà nên
cân có nên là tam giác đều suy ra
Thấy (góc ngoài tại đỉnh của tam giác ) nên
Suy ra (hai góc tương ứng bằng nhau) và (hai cạnh tương ứng)
Lại có nên
cân tại có nên nó là tam giác đều.
Đây nhé!
Mình đã làm lâu rồi nhưng Online Math lỗi nên mình phải cắt, ghép vào paint cho bạn.
a) Xét tam giác ABD có :
AB = AD (gt)
Suy ra tam giác ABD cân tại BAD
Suy ra góc ABD = góc ADB ( 2 góc đáy)
Ta có : góc BAD + góc CAD = góc BAC
mà góc BAC = 120 độ ; góc BAD =góc CAD (gt)
Suy ra 2BAD= 120 độ
Suy ra BAD= 120 độ chia 2
Suy ra BAD =60 độ
Ta lại có tam giác BAD cân tại BAD
Suy ra BDA =DBA =(180 độ - BAD) chia 2
mà BAD = 60 độ
Suy ra BDA=DBA= (180 độ - 60 độ ) chia 2
Suy ra BDA=DBA = 60độ
Xét tam giác BDA có
BDA=DBA=BAD=60 độ
Suy ra tam giác BDA đều
a: Xét ΔABC có AB=AC
nên ΔABC cân tại A
Suy ra: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
c: Ta có: M nằm trên đường trung trực của AC
nên MA=MC
hay ΔMAC cân tại M