K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

Làm ơn giải ra luôn hộ

14 tháng 3 2017

Ta có: A = \(\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}\right)\)

Nhận xét: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow A>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)=\frac{1}{10}+\frac{90}{100}=1\)

Vậy A > 1 (đpcm)

22 tháng 6 2017

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)

\(=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)

\(=\frac{1}{10}+\frac{90}{100}>1\)

\(A>1\left(đpcm\right)\)

9 tháng 10 2017

a>1(đpcm)

28 tháng 2 2017

 Vì A > 1/91+1/91+...+1/91=1/91*91=1

 Vậy A>1

28 tháng 2 2017

30 số hạng đầu lớn hơn 1 

\(\frac{1}{10}+\frac{1}{11}+..+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}=\frac{1}{2}\)\(\frac{1}{2}\)

\(\frac{1}{20}+\frac{1}{21}+..+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+..+\frac{1}{30}=\frac{1}{3}\)

\(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)

=> \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)

7 tháng 4 2019

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

\(A=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)

\(A=\frac{1}{10}+\frac{99}{100}=1\)

=> A > 1

7 tháng 4 2019

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

\(A=\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

\(A=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)

\(A=\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+... +\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)

\(\Rightarrow A>1\)

17 tháng 7 2016

\(C=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

    \(>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41}{50}+\frac{50}{100}=\frac{33}{25}=1\frac{8}{25}>1\)

17 tháng 7 2016

Ta thấy rằng mỗi số hạng trong tổng đều lớn hơn hoặc bằng \(\frac{1}{100}\)

=> \(C>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}x100=1\)

=> C>1 (Đpcm)

10 tháng 6 2016

1/10+1/11+……+1/99 > 1/20+1/20+…..+1/20 = 10/20 = 1/2

1/20+1/21+……+1/29 > 1/20+1/30+…..+1/30 = 10/30 = 1/3

1/30+1/31+……+1/39 > 1/40+1/40+…..+1/40 = 10/40= 1/4 

=> 1/10 + 1/11 +...+ 1/39 > 1/2 + 1/3 + 1/4 = 13/12 > 1

Vậy A > 1

21 tháng 2 2017

A không thể lớn hơn 1 được

21 tháng 2 2017

Ta có:

\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{40}{50}=\frac{4}{5}\)

\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)

Từ đây ta suy ra 

A > \(\frac{4}{5}+\frac{1}{2}+\frac{1}{100}=1,31>1\)  

+)Ta có:\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+..........+\frac{1}{99}+\frac{1}{100}\)(có (100-10):1+1=91 số hạng)

\(\Rightarrow A=\left(\frac{1}{10}+\frac{1}{11}+.........+\frac{1}{54}\right)+\frac{1}{55}+\left(\frac{1}{56}+\frac{1}{57}+.............+\frac{1}{100}\right)>\)

\(\left(\frac{1}{54}+\frac{1}{54}+........+\frac{1}{54}\right)+\frac{1}{55}+\left(\frac{1}{100}+\frac{1}{100}+........+\frac{1}{100}\right)\)

\(\Rightarrow A>\frac{45}{54}+\frac{1}{55}+\frac{45}{100}=\frac{5}{6}+\frac{1}{55}+\frac{9}{20}=\frac{5}{6}+\frac{9}{20}+\frac{1}{55}=\frac{50}{60}+\frac{27}{60}+\frac{1}{55}\)\(=\frac{77}{60}+\frac{1}{55}>1\)(vì \(\frac{77}{60}>1\))

\(\Rightarrow A>1\)(ĐPCM)
Chúc bn học tốt

5 tháng 3 2020

thanks nhìu!

15 tháng 3 2016

Đặt A = B + \(\frac{1}{10}\) Ta thấy B có 90 số hạng và 1/100 < 1/11 ; 1/100 < 1/12 .....

Giả sử cả 90 số hạng đều là 1/100 ta có B > 90.(1/100) = 90/100

=> A > 1/10 + 90/100 => A>1

15 tháng 3 2016

\(A=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)

\(A>\frac{1}{10}+\frac{1}{10}.90=1\)

Vậy A>1