Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta thấy:
\(\frac{1}{2}>\frac{1}{6};\frac{1}{3}>\frac{1}{6};\frac{1}{4}>\frac{1}{6};\frac{1}{5}>\frac{1}{6};\frac{1}{6}=\frac{1}{6}\)
\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\)
\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{5}{6}\)
Bài 2:
Đặt \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)
Ta thấy \(\frac{1}{5}=\frac{1}{1.5};\frac{1}{45}=\frac{1}{5.9};\frac{1}{117}=\frac{1}{9.13}\)
Theo quy luật như vậy ta có các số tiếp theo là:
\(\frac{1}{13.17}=\frac{1}{221};\frac{1}{17.21}=\frac{1}{357};\frac{1}{21.25}=\frac{1}{525};\frac{1}{25.29}=\frac{1}{725};...\)
Ta có \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)
\(=>A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{27.31}\)
\(=>4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{27.31}\)
\(=>4A=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+...+\frac{31-27}{27.31}\)
\(=>4A=\frac{5}{1.5}-\frac{1}{1.5}+\frac{9}{5.9}-\frac{5}{5.9}+\frac{13}{9.13}-\frac{9}{9.13}+...+\frac{31}{27.31}-\frac{27}{27.31}\)
\(=>4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{27}-\frac{1}{31}\)
\(=>4A=1-\frac{1}{31}=\frac{30}{31}=>A=\frac{30}{31}.\frac{1}{4}=\frac{15}{62}\)
\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{101}}\)
\(2A-A=\frac{1}{2^{101}}-\frac{1}{2}\)
\(\Rightarrow A=\frac{1}{2^{101}}-\frac{1}{2}\)
\(\Rightarrow A>0\) ( đpcm )
Bài này phải làm như thế này nha lần trước tui làm nhầm sorry
Study well
Ta có : \(\frac{1}{31}>\frac{1}{40};\frac{1}{32}>\frac{1}{40};\frac{1}{33}>\frac{1}{40};...;\frac{1}{38}>\frac{1}{40};\frac{1}{39}>\frac{1}{40}\)
=> \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\) (1)
\(\frac{1}{41}>\frac{1}{50};\frac{1}{42}>\frac{1}{50};\frac{1}{43}>\frac{1}{50};...;\frac{1}{48}>\frac{1}{50};\frac{1}{49}>\frac{1}{50}\)
=> \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{49}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\) (2)
\(\frac{1}{51}>\frac{1}{60};\frac{1}{52}>\frac{1}{60};\frac{1}{53}>\frac{1}{60};...;\frac{1}{58}>\frac{1}{60};\frac{1}{59}>\frac{1}{60}\)
=> \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{59}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{10}{60}=\frac{1}{6}\)(3)
Từ (1) , (2) và (3) => \(\frac{1}{31}+...+\frac{1}{39}+\frac{1}{40}+\frac{1}{41}+...+\frac{1}{49}+\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}+\frac{1}{60}>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
=> \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\)
=> \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{7}{12}\)
=> \(A>\frac{7}{12}\)
Hài lòng chưa má? -_-
Thấy 1/41+1/42 +......+ 1/60 < 1/40 .20
1/41 +1/42 + .....+1/60<1/2
mà 1/61 +1/62+......+1/80 < 1/60 .20 =1/3
suy ra 1/41+1/42+ .......+1/80 <1/2 +1/3=7/12(đpcm)
Lại có 1/41 +1/42 +.....+1/80 <1/40 .40 =1(đpcm)
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(2A+A=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)\)
\(3A=1-\frac{1}{64}\)
\(3A=\frac{63}{64}\Rightarrow A=\frac{63}{64}\div3=\frac{21}{64}< \frac{1}{3}\)
ta lấy ví đụ 1/2
vì 1/2 đã nhỏ hơn 1 mà các số kia đều nhỏ hơn 1/2
k nhé
đoạn cuối cùng là lớn hơn 1 chứ ko phải 11 nhe mình đánh nhầm . xin lỗi
A = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 89 + 1 / 90 ... 5 / 6
A = 5 / 6 = 1 / 2 + 1 / 3
Ta đặt B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 ( 30 phân số )
C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 ( 30 phân số )
Ta có : B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 > 1 / 60 + 1 / 60 + 1 / 60 + ... + 1 / 60 = 30 . 1 / 60 = 1 / 2
C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 > 1 / 90 + 1 / 90 + 1 / 90 + ... + 1 / 90 = 30 . 1 / 90 = 1 / 3
Vì A = B + C > 1 / 2 + 1 / 3 = 5 / 6 nên 1 / 31 + 1 / 32 + ... + 1 / 89 + 1 / 90 > 5 / 6
GIẢI VẦY MỚI GỌI LÀ GIẢI CHI TIẾT
Ta sẽ lấy
\(1-\frac{1}{90}=\frac{89}{90}\)
Sau đó ta so sánh :
\(\frac{89}{90}>\frac{5}{6}\)
k mình nhé !!!
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)
\(=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)
\(=\frac{1}{10}+\frac{90}{100}>1\)
\(A>1\left(đpcm\right)\)
a>1(đpcm)